Maxtor 91024U3, 90683U2, 92049U6, 91366U4, 91707U5 manual Reset and Interrupt Handling, Reset Handling

Page 48

HOST SOFTWARE INTERFACE

Reset and Interrupt Handling

Reset Handling

One of three different conditions may cause a reset: power on, hardware reset or software reset. All three cause the interface processor to initialize itself and the Task File registers of the interface. A reset also causes a set of the Busy bit in the Status register. The Busy bit does not clear until the reset clears and the drive completes initialization. Completion of a reset operation does not generate a host interrupt.

Task File registers are initialized as follows:

Error

1

Sector Count

1

Sector Number

1

Cylinder Low

0

Cylinder High

0

Drive/Head

0

Interrupt Handling

The drive requests data transfers to and from the host by asserting its IRQ 14 signal. This signal interrupts the host if enabled by bit 1 (IRQ enable) of the Fixed Disk Control register.

Clear this interrupt by reading the Status register, writing the Command register, or by executing a host hardware or software reset.

6 – 6

Image 48
Contents HA RD Drive Produc T MA Nual DiamondMax Plus REV EC no Section Description Date Before You Begin U T I O NContents Product Specifications Handling and InstallationAT Interface Description Host Software InterfaceInterface Commands Service and SupportGlossary Figures Introduction Maxtor CorporationManual Organization AbbreviationsSignal Conventions ConventionsKey Words NumberingDiamondMax Plus 6800 Key Features Product DescriptionProduct Features Functional / InterfaceOn-the-Fly Hardware Error Correction Code ECC Logical Block AddressingDefect Management Zone DMZ Software ECC CorrectionRead-Ahead Mode Cache ManagementBuffer Segmentation Automatic Write Reallocation AWRMajor HDA Components Subsystem Configuration Jumper Location/ConfigurationCylinder Limitation Dual Drive SupportProduct Specifications Drive ConfigurationPerformance Specifications Models and CapacitiesPhysical Dimensions Parameter Standard MetricPower Requirements Power Mode DefinitionsEPA Energy Star Compliance Environmental LimitsReliability Specifications Shock and VibrationSafety Regulatory Compliance Radiated Electromagnetic Field Emissions EMC ComplianceCanadian Emissions Statement Handling and Installation Hard Drive Handling PrecautionsPre-formatted Drive Important NoticeUnpacking and Inspection Multi-pack Shipping ContainerPhysical Installation Recommended Mounting ConfigurationRepacking Handling Precautions Tools for InstallationSystem Requirements Drive Identification InformationGeneral Requirements Hard Drive IdentificationSystems Using Cable Select Installing 5.25-inch Mounting Brackets and RailsInstalling in a Device Bay Mounting Drive in SystemAttaching Interface and Power Cables Attaching System CablesSystem Setup Setting the Bios CmosBios Cmos Parameters Hard Drive Preparation System Hangs During Boot Interface Connector AT Interface DescriptionPin Description Summary PINPIN Name Signal Name Signal Description Pin Description TableTiming Parameters Mode PIO TimingDMA Timing Mode MIN MAX Ultra DMA TimingSustained Ultra DMA Data In Burst Device Terminating an Ultra DMA Data In Burst Initiating an Ultra DMA Data Out Burst Device Pausing an Ultra DMA Data Out Burst Device Terminating an Ultra DMA Data Out Burst Error Register Features RegisterHost Software Interface Task File RegistersSector Count Register Sector Number RegisterCylinder Number Registers Device/Head RegisterCommand Register Command Name Command Code Parameters Used Timer Value TIME-OUT PeriodSummary Control Diagnostic Registers Alternate Status RegisterDevice Control Register Digital Input RegisterReset and Interrupt Handling Reset HandlingInterrupt Handling Interface Commands Set Feature CommandsRead Commands Read SectorsRead Verify Sectors Read DMA Read MultipleWrite Commands Set Multiple ModeWrite Sectors Write Verify SectorsWrite Multiple Write DMASet Feature Commands Set Features ModeValue Description Power Mode Commands Sleep Mode Initialization Commands Word Content DescriptionIdentify Drive 15-8 = PIO data transfer mode = Write Cache enabled Initialize Drive Parameters Seek, Format and Diagnostic Commands Execute Drive DiagnosticError Code Description Format TrackA.R.T. Command Set Execute S.M.A.R.TService and Support Service PolicyNo Quibble Service SupportMaxFax Service Customer ServiceInternet Access Time GlossaryCylinder Zero Gigabyte GB Logical Block Addressing Read Gate Signal THIN-FILM Media

91024U3, 92049U6, 90683U2, 91707U5, 92732U8 specifications

The Maxtor series of hard drives, specifically the models 91366U4, 92732U8, 91707U5, 90683U2, and 92049U6, exemplify the evolution of storage technology during the late 1990s and early 2000s, pivotal in shaping contemporary data storage solutions. These hard drives are recognized for their reliability, performance, and impressive capacities for their time.

The Maxtor 91366U4 features a storage capacity of 13.6 GB, delivering a spindle speed of 5,400 RPM. Its UATA interface allows for a fast data transfer rate, which was notable in its category. The model incorporates Advanced Power Management, contributing to lower power consumption and reduced heat generation, making it an appealing choice for system builders looking to enhance system longevity.

Moving on to the Maxtor 92732U8, this model increased capacity to 27.3 GB, aligning with the growing demand for more storage from users and businesses alike. This drive maintained a 5,400 RPM spindle speed while improving the access times, which aided in speeding up file retrieval processes. Noteworthy is its Plug and Play capability, which simplified installation and compatibility across various systems.

The Maxtor 91707U5 brought forward advancements in data integrity with the inclusion of features such as error correction codes. With a storage size of 17.3 GB and similar operational speeds, this model catered to users seeking reliable data management. Its robust build aimed to protect against accidents and environmental factors, ensuring data was safe while providing consistent performance.

The Maxtor 90683U2, with its 68.3 GB capacity, is particularly recognized for its reliability in desktop applications. The drive integrates a combination of Unidirectional Technology, driving advancements in read/write capabilities, and extensive shock protection, making it an ideal candidate for users with intensive data processing requirements.

Lastly, the Maxtor 92049U6 is known for its balanced blend of performance and functionality. Holding a capacity of 49.1 GB and retaining the sophisticated features of its predecessors, this model enabled faster data access and storage capabilities that met the needs of both home and professional users.

Together, these Maxtor hard drives embody the technological strides in the evolution of data storage—offering capacities and performances that set a standard in the industry and laid the groundwork for future storage solutions. The combination of innovative technologies and practical features made these drives highly sought after during their respective periods, and their legacy continues to influence modern data storage products.