Maxtor 90683U2 manual Seek, Format and Diagnostic Commands, Format Track, Execute Drive Diagnostic

Page 61

INTERFACECOMMANDS

Seek, Format and Diagnostic Commands

Seek

Initiates a seek to the track, and selects the head specified in the Command block.

1.Sets BSY in the Status register,

2.Initiates the Seek,

3.Resets BSY and

4.Generates an interrupt.

The drive does not wait for the seek to complete before returning the interrupt. If a new command is issued to a drive during the execution of a Seek command, the drive will wait (with BSY active) for the Seek to complete before executing the new command.

Format Track

Formats the track specified in the Command Block. Shortly after the Command register is written, the drive sets the bit, and waits for the host to fill the sector buffer with the interleave table. When the buffer is full, the drive resets DRQ, sets BSY and begins command execution. If the drive is not already on the desired track, an implied seek is performed. Once at the desired track the data fields are written with all zeroes.

Execute Drive Diagnostic

Commands the drive to implement the internal diagnostic tests. (These tests are executed only upon command receipt; they do not run automatically at power up or after a reset.)

The drive sets BSY immediately upon receiving this command. The following table presents the codes and their descriptions. Note that the value in the Error register should be viewed as a unique 8 bit Code.

ERROR CODE

DESCRIPTION

 

 

01

No error detected

00

Master drive failed

 

 

80, 82

Master and slave drives failed

81

Slave drive failed

 

 

Note: If a slave drive fails diagnostics, the master drive OR’s 80h with its own status, and loads that code into the Error register. If a slave drive passes diagnostics (or a slave is absent), the master drive OR’s 00 with its own status and loads that code into the Error register.

7 – 13

Image 61
Contents HA RD Drive Produc T MA Nual DiamondMax Plus REV EC no Section Description Date U T I O N Before You BeginContents Handling and Installation Product SpecificationsHost Software Interface AT Interface DescriptionService and Support Interface CommandsGlossary Figures Maxtor Corporation IntroductionManual Organization AbbreviationsConventions Signal ConventionsKey Words NumberingProduct Description DiamondMax Plus 6800 Key FeaturesFunctional / Interface Product FeaturesLogical Block Addressing On-the-Fly Hardware Error Correction Code ECCDefect Management Zone DMZ Software ECC CorrectionCache Management Read-Ahead ModeBuffer Segmentation Automatic Write Reallocation AWRMajor HDA Components Jumper Location/Configuration Subsystem ConfigurationCylinder Limitation Dual Drive SupportDrive Configuration Product SpecificationsPerformance Specifications Models and CapacitiesParameter Standard Metric Physical DimensionsPower Mode Definitions Power RequirementsEPA Energy Star Compliance Environmental LimitsShock and Vibration Reliability SpecificationsRadiated Electromagnetic Field Emissions EMC Compliance Safety Regulatory ComplianceCanadian Emissions Statement Hard Drive Handling Precautions Handling and InstallationPre-formatted Drive Important NoticeMulti-pack Shipping Container Unpacking and InspectionRecommended Mounting Configuration Physical InstallationRepacking Tools for Installation Handling PrecautionsSystem Requirements Drive Identification InformationHard Drive Identification General RequirementsInstalling 5.25-inch Mounting Brackets and Rails Systems Using Cable SelectInstalling in a Device Bay Mounting Drive in SystemAttaching System Cables Attaching Interface and Power CablesSetting the Bios Cmos System SetupBios Cmos Parameters Hard Drive Preparation System Hangs During Boot AT Interface Description Interface ConnectorPin Description Summary PINPin Description Table PIN Name Signal Name Signal DescriptionPIO Timing Timing Parameters ModeDMA Timing Ultra DMA Timing Mode MIN MAXSustained Ultra DMA Data In Burst Device Terminating an Ultra DMA Data In Burst Initiating an Ultra DMA Data Out Burst Device Pausing an Ultra DMA Data Out Burst Device Terminating an Ultra DMA Data Out Burst Features Register Error RegisterHost Software Interface Task File RegistersSector Number Register Sector Count RegisterCylinder Number Registers Device/Head RegisterCommand Register Timer Value TIME-OUT Period Command Name Command Code Parameters UsedSummary Alternate Status Register Control Diagnostic RegistersDevice Control Register Digital Input RegisterReset Handling Reset and Interrupt HandlingInterrupt Handling Set Feature Commands Interface CommandsRead Sectors Read CommandsRead Verify Sectors Read Multiple Read DMASet Multiple Mode Write CommandsWrite Sectors Write Verify SectorsWrite DMA Write MultipleSet Features Mode Set Feature CommandsValue Description Power Mode Commands Sleep Mode Word Content Description Initialization CommandsIdentify Drive 15-8 = PIO data transfer mode = Write Cache enabled Initialize Drive Parameters Execute Drive Diagnostic Seek, Format and Diagnostic CommandsError Code Description Format TrackExecute S.M.A.R.T A.R.T. Command SetService Policy Service and SupportNo Quibble Service SupportCustomer Service MaxFax ServiceInternet Glossary Access TimeCylinder Zero Gigabyte GB Logical Block Addressing Read Gate Signal THIN-FILM Media

91024U3, 92049U6, 90683U2, 91707U5, 92732U8 specifications

The Maxtor series of hard drives, specifically the models 91366U4, 92732U8, 91707U5, 90683U2, and 92049U6, exemplify the evolution of storage technology during the late 1990s and early 2000s, pivotal in shaping contemporary data storage solutions. These hard drives are recognized for their reliability, performance, and impressive capacities for their time.

The Maxtor 91366U4 features a storage capacity of 13.6 GB, delivering a spindle speed of 5,400 RPM. Its UATA interface allows for a fast data transfer rate, which was notable in its category. The model incorporates Advanced Power Management, contributing to lower power consumption and reduced heat generation, making it an appealing choice for system builders looking to enhance system longevity.

Moving on to the Maxtor 92732U8, this model increased capacity to 27.3 GB, aligning with the growing demand for more storage from users and businesses alike. This drive maintained a 5,400 RPM spindle speed while improving the access times, which aided in speeding up file retrieval processes. Noteworthy is its Plug and Play capability, which simplified installation and compatibility across various systems.

The Maxtor 91707U5 brought forward advancements in data integrity with the inclusion of features such as error correction codes. With a storage size of 17.3 GB and similar operational speeds, this model catered to users seeking reliable data management. Its robust build aimed to protect against accidents and environmental factors, ensuring data was safe while providing consistent performance.

The Maxtor 90683U2, with its 68.3 GB capacity, is particularly recognized for its reliability in desktop applications. The drive integrates a combination of Unidirectional Technology, driving advancements in read/write capabilities, and extensive shock protection, making it an ideal candidate for users with intensive data processing requirements.

Lastly, the Maxtor 92049U6 is known for its balanced blend of performance and functionality. Holding a capacity of 49.1 GB and retaining the sophisticated features of its predecessors, this model enabled faster data access and storage capabilities that met the needs of both home and professional users.

Together, these Maxtor hard drives embody the technological strides in the evolution of data storage—offering capacities and performances that set a standard in the industry and laid the groundwork for future storage solutions. The combination of innovative technologies and practical features made these drives highly sought after during their respective periods, and their legacy continues to influence modern data storage products.