Maxtor 4320 manual Major HDA Components

Page 16

PRODUCTDESCRIPTION

Major HDA Components

Drive Mechanism

A brush-less DC direct drive motor rotates the spindle at 5,400 RPM (±0.1%). The dynamically balanced motor/spindle assembly ensures minimal mechanical run-out to the disks. A dynamic brake provides a fast stop to the spindle motor upon power removal. The speed tolerance includes motor performance and motor circuit tolerances.

Rotary Actuator

All DiamondMax™ 4320 drives employ a rotary voice coil actuator which consists of a moving coil, an actuator arm assembly and stationary magnets. The actuator moves on a low-mass, low-friction center shaft. The low friction contributes to fast access times and low power consumption.

Read/Write Electronics

An integrated circuit mounted within the sealed head disk assembly (near the read/write heads) provides up to eight head selection (depending on the model), read pre-amplification and write drive circuitry.

Read/Write Heads and Media

Low mass, low force magneto-resistive read/write heads record data on 3.5-inch diameter disks. Maxtor uses a sputtered thin film medium on all disks for DiamondMax 4320 drives.

Air Filtration System

All DiamondMax 4320 drives are assembled in a Class 100 controlled environment. Over the life of the drive, a 0.1 micron filter and breather filter located within the sealed head disk assembly (HDA) maintain a clean environment to the heads and disks. DiamondMax 4320 drives are designed to operate in a typical office environment with minimum environmental control.

Microprocessor

The microprocessor controls the following functions for the drive electronics:

Command execution

Cache management

Data correction and error recovery

Diagnostic execution

Data sequencing

Head positioning (including error recovery)

Host interface

Index detection

Spin speed control

Seeks

Servo

S.M.A.R.T.

2 – 5

Image 16
Contents HA RD Drive Produc T MA Nual DiamondMax Revisions Manual No Before You Begin U T I O NContents Product Specifications Handling and InstallationAT Interface Description Host Software InterfaceService and Support Interface CommandsGlossary Figures Introduction Maxtor CorporationManual Organization AbbreviationsSignal Conventions ConventionsKey Words NumberingDiamondMax 4320 Key Features Product DescriptionProduct Features Functional / InterfaceOn-the-Fly Hardware Error Correction Code ECC Logical Block AddressingDefect Management Zone DMZ Software ECC CorrectionRead-Ahead Mode Cache ManagementBuffer Segmentation Automatic Write Reallocation AWRMajor HDA Components Subsystem Configuration Jumper Location/ConfigurationCylinder Limitation Dual Drive SupportProduct Specifications Drive ConfigurationPerformance Specifications Models and CapacitiesPhysical Dimensions Parameter Standard MetricPower Requirements Average Power Mode DefinitionsEPA Energy Star Compliance Environmental LimitsReliability Specifications Shock and VibrationRadiated Electromagnetic Field Emissions EMC Compliance Safety Regulatory ComplianceCanadian Emissions Statement Handling and Installation Hard Drive Handling PrecautionsPre-formatted Drive Important NoticeUnpacking and Inspection Multi-pack Shipping ContainerRecommended Mounting Configuration Physical InstallationRepacking Before You Begin General Requirements Mounting Drive in System Attaching Interface Power Cables System Setup Hard Drive Preparation System Hangs During Boot Interface Connector AT Interface DescriptionPin Description Summary PINPIN Name Signal Name Signal Description Pin Description TableTiming Parameters Mode PIO TimingDMA Timing Mode MIN MAX Ultra DMA TimingSustained Ultra DMA Data In Burst Device Terminating an Ultra DMA Data In Burst Initiating an Ultra DMA Data Out Burst Device Pausing an Ultra DMA Data Out Burst Device Terminating an Ultra DMA Data Out Burst Error Register Features RegisterHost Software Interface Task File RegistersSector Count Register Sector Number RegisterCylinder Number Registers Device/Head RegisterCommand Register Timer Value TIME-OUT Period Command Name Command Code Parameters UsedSummary Control Diagnostic Registers Alternate Status RegisterDevice Control Register Digital Input RegisterReset Handling Reset and Interrupt HandlingInterrupt Handling Interface Commands Set Feature CommandsRead Sectors Read CommandsRead Verify Sectors Read DMA Read MultipleWrite Commands Set Multiple ModeWrite Sectors Write Verify SectorsWrite Multiple Write DMASet Features Mode Set Feature CommandsValue Description Power Mode Commands Sleep Mode Word Content Description Initialization CommandsIdentify Drive 15-8 = PIO data transfer mode = Write Cache enabled Initialize Drive Parameters Seek, Format and Diagnostic Commands Execute Drive DiagnosticError Code Description Format TrackA.R.T. Command Set Execute S.M.A.R.TService and Support Service PolicyNo Quibble Service SupportCustomer Service MaxFax ServiceInternet Access Time GlossaryCylinder Zero Gigabyte GB Logical Block Addressing Read Gate Signal THIN-FILM Media

4320 specifications

The Maxtor 4320 is a notable entry in the realm of hard disk drives, widely recognized for its reliability and performance in data storage. Released in the early 2000s, it quickly gained traction among both consumers and professionals looking for efficient solutions for their data management needs.

At the core of the Maxtor 4320 is its impressive storage capacity. With a capacity of 20GB, it was considered substantial at the time, making it ideal for storing a variety of files, from documents to multimedia content. This drive provided users with ample space to expand their digital footprint without the constant worry of running out of space.

One of the standout features of the Maxtor 4320 is its data transfer rate. Operating at a speed of 5400 RPM, it offered a balanced performance that suited casual users and most business applications. The drive utilized an IDE interface, ensuring compatibility with a wide range of motherboards and systems, allowing for easy integration into both desktop and laptop computers.

The Maxtor 4320 is characterized by its durability. Engineered with robust materials and a well-designed casing, it was built to withstand regular use. This durability became a significant selling point, as data integrity and safety are paramount in any storage solution. Users could rely on the Maxtor 4320 to protect their important data against the wear and tear associated with daily operations.

In terms of technologies, the Maxtor 4320 featured advanced error correction algorithms, which ensured that data retrieval was not only fast but also reliable. This was particularly important at a time when data integrity was becoming increasingly crucial for personal and corporate users alike.

Additionally, the drive's low power consumption was a key consideration for eco-conscious consumers. It allowed for extended use without excessively draining power, contributing to lower energy bills and a smaller carbon footprint. This feature made the Maxtor 4320 an attractive option for users looking to balance performance with energy efficiency.

In conclusion, the Maxtor 4320 combined reliability, performance, and durability to become a popular choice in the hard disk drive market of the early 2000s. Its large storage capacity, reasonable speed, and energy efficiency catered to a wide range of users, from home consumers to small businesses. The legacy of the Maxtor 4320 continues to influence current storage solutions as it laid the groundwork for advancements in hard disk technology.