Maxtor 4320 manual Key Words, Numbering, Signal Conventions

Page 11

DIAMONDMAX 4320 – INTRODUCTION

Conventions

If there is a conflict between text and tables, the table shall be accepted as being correct.

Key Words

The names of abbreviations, commands, fields and acronyms used as signal names are in all uppercase type (e.g., IDENTIFY DRIVE). Fields containing only one bit are usually referred to as the “name” bit instead of the “name” field.

Names of drive registers begin with a capital letter (e.g., Cylinder High register).

Numbering

Numbers that are not followed by a lowercase “b” or “h” are decimal values. Numbers that are followed by a lowercase “b” (e.g., 01b) are binary values. Numbers that are followed by a lowercase “h” (e.g., 3Ah) are hexadecimal values.

Signal Conventions

Signal names are shown in all uppercase type.

All signals are either high active or low active signals. A dash character (-) at the end of a signal name indicates that the signal is low active. A low active signal is true when it is below ViL and is false when it is above ViH. A signal without a dash at the end indicates that the signal is high active. A high active signal is true when it is above ViH and is false when it is below ViL.

When a signal is asserted, it means the signal is driven by an active circuit to its true state.

When a signal is negated, it means the signal is driven by an active circuit to its false state.

When a signal is released, it means the signal is not actively driven to any state. Some signals have bias circuitry that pull the signal to either a true or false state when no signal driver is actively asserting or negating the signal. These instances are noted under the description of the signal.

1 – 2

Image 11
Contents HA RD Drive Produc T MA Nual DiamondMax Revisions Manual No U T I O N Before You BeginContents Handling and Installation Product SpecificationsHost Software Interface AT Interface DescriptionGlossary Interface CommandsService and Support Figures Abbreviations IntroductionMaxtor Corporation Manual OrganizationNumbering Signal ConventionsConventions Key WordsProduct Description DiamondMax 4320 Key FeaturesFunctional / Interface Product FeaturesSoftware ECC Correction On-the-Fly Hardware Error Correction Code ECCLogical Block Addressing Defect Management Zone DMZAutomatic Write Reallocation AWR Read-Ahead ModeCache Management Buffer SegmentationMajor HDA Components Dual Drive Support Subsystem ConfigurationJumper Location/Configuration Cylinder LimitationModels and Capacities Product SpecificationsDrive Configuration Performance SpecificationsParameter Standard Metric Physical DimensionsEnvironmental Limits Power Requirements AveragePower Mode Definitions EPA Energy Star ComplianceShock and Vibration Reliability SpecificationsCanadian Emissions Statement Safety Regulatory ComplianceRadiated Electromagnetic Field Emissions EMC Compliance Important Notice Handling and InstallationHard Drive Handling Precautions Pre-formatted DriveMulti-pack Shipping Container Unpacking and InspectionRepacking Physical InstallationRecommended Mounting Configuration Before You Begin General Requirements Mounting Drive in System Attaching Interface Power Cables System Setup Hard Drive Preparation System Hangs During Boot PIN Interface ConnectorAT Interface Description Pin Description SummaryPin Description Table PIN Name Signal Name Signal DescriptionPIO Timing Timing Parameters ModeDMA Timing Ultra DMA Timing Mode MIN MAXSustained Ultra DMA Data In Burst Device Terminating an Ultra DMA Data In Burst Initiating an Ultra DMA Data Out Burst Device Pausing an Ultra DMA Data Out Burst Device Terminating an Ultra DMA Data Out Burst Task File Registers Error RegisterFeatures Register Host Software InterfaceDevice/Head Register Sector Count RegisterSector Number Register Cylinder Number RegistersCommand Register Summary Command Name Command Code Parameters UsedTimer Value TIME-OUT Period Digital Input Register Control Diagnostic RegistersAlternate Status Register Device Control RegisterInterrupt Handling Reset and Interrupt HandlingReset Handling Set Feature Commands Interface CommandsRead Verify Sectors Read CommandsRead Sectors Read Multiple Read DMAWrite Verify Sectors Write CommandsSet Multiple Mode Write SectorsWrite DMA Write MultipleValue Description Set Feature CommandsSet Features Mode Power Mode Commands Sleep Mode Identify Drive Initialization CommandsWord Content Description 15-8 = PIO data transfer mode = Write Cache enabled Initialize Drive Parameters Format Track Seek, Format and Diagnostic CommandsExecute Drive Diagnostic Error Code DescriptionExecute S.M.A.R.T A.R.T. Command SetSupport Service and SupportService Policy No Quibble ServiceInternet MaxFax ServiceCustomer Service Glossary Access TimeCylinder Zero Gigabyte GB Logical Block Addressing Read Gate Signal THIN-FILM Media

4320 specifications

The Maxtor 4320 is a notable entry in the realm of hard disk drives, widely recognized for its reliability and performance in data storage. Released in the early 2000s, it quickly gained traction among both consumers and professionals looking for efficient solutions for their data management needs.

At the core of the Maxtor 4320 is its impressive storage capacity. With a capacity of 20GB, it was considered substantial at the time, making it ideal for storing a variety of files, from documents to multimedia content. This drive provided users with ample space to expand their digital footprint without the constant worry of running out of space.

One of the standout features of the Maxtor 4320 is its data transfer rate. Operating at a speed of 5400 RPM, it offered a balanced performance that suited casual users and most business applications. The drive utilized an IDE interface, ensuring compatibility with a wide range of motherboards and systems, allowing for easy integration into both desktop and laptop computers.

The Maxtor 4320 is characterized by its durability. Engineered with robust materials and a well-designed casing, it was built to withstand regular use. This durability became a significant selling point, as data integrity and safety are paramount in any storage solution. Users could rely on the Maxtor 4320 to protect their important data against the wear and tear associated with daily operations.

In terms of technologies, the Maxtor 4320 featured advanced error correction algorithms, which ensured that data retrieval was not only fast but also reliable. This was particularly important at a time when data integrity was becoming increasingly crucial for personal and corporate users alike.

Additionally, the drive's low power consumption was a key consideration for eco-conscious consumers. It allowed for extended use without excessively draining power, contributing to lower energy bills and a smaller carbon footprint. This feature made the Maxtor 4320 an attractive option for users looking to balance performance with energy efficiency.

In conclusion, the Maxtor 4320 combined reliability, performance, and durability to become a popular choice in the hard disk drive market of the early 2000s. Its large storage capacity, reasonable speed, and energy efficiency catered to a wide range of users, from home consumers to small businesses. The legacy of the Maxtor 4320 continues to influence current storage solutions as it laid the groundwork for advancements in hard disk technology.