Agilent Technologies 66lxxA manual Idle State, Initiated State, Delaying State

Page 57

Idle State

When the power module is turned on, the trigger subsystem is in the idle state. In this state, the trigger subsystem ignores all triggers. When the trigger action has been completed, the trigger subsystem returns to this state. It also returns to the Idle state if the ABORt command or an implied ABORt command (*RST, *RCL, or any LIST) is sent.

Initiated State

The INITiate command moves the trigger subsystem from the Idle state to the Initiated State. This enables the power module to receive triggers. The source of the trigger is selected with the TRIGger:SOURce command (see "Chapter 3 - Language Dictionary"). When in the Initiated state, the power module responds to events on the selected trigger source by transferring to the Delaying state. As shown in Figure 5-lA there is another trigger signal that is not subject to TRIG: SOUR control. This is the TRIGger:IMMediate command. If the trigger subsystem is in the Initiated state, this command generates a trigger that transfers the trigger subsystem directly to the Output Change state, bypassing the Delaying state.

Delaying State

When a trigger event occurs on the selected trigger source, the trigger subsystem transfers to the Delaying state. In this state, the subsystem waits for the interval specified by the TRIGger:DELay command before moving to the next state. As shown in Figure 5-1A, a TRIGger: IMMediate command will bypass any programmed delay and cause an immediate transition to the Output Change state.

Figure 5-1. Simplified Models of Trigger Modes

58 Synchronizing Power Module Output Changes

Image 57
Contents Programming Guide Agilent Part No Microfiche Part No Update AprilSafety Guidelines Contents Abor Status Reporting Error Messages Synchronizing Power Module Output ChangesAbout This Guide IntroductionDocumentation Summary External ReferencesDownloading and Installing the Driver VXIplug&play Power Products Instrument DriversAccessing Online Help Supported ApplicationsIntroduction To Programming Gpib Capabilities Of The Power ModuleModule Gpib Address Introduction To ScpiRST *IDN? *SRE Voltlev 8.0 Prot 8.8 CURR? Volt LEV Prot CurrOutpprotdel Effect of Optional Headers Traversing the Command TreeOUTPUTPROTECTIONCLEARSTATUSOPERATIONCONDITION? Outputprotectionclear STATUSOPERATIONCONDITION?Voltagelevel 7PROTECTION 8CURRENTLEVEL 3MODE List Volttrig 7.5INIT*TRG Outp OFF*RCL 2OUTP onNumerical Data Formats Talking Formats SymbolListening Formats Suffixes and Multipliers Class Unit Unit with MultiplierAssign @PM3TO System ConsiderationsAgilent Basic Controllers Error HandlingUsing the National Instruments Gpib Interface Sending the Command Volt 5 in C Sending the Command Volt 5 in BasicReceiving Module Data with Basic Receiving Data from the ModuleReceiving Module Data with C Introduction Language DictionaryCLS Description Of Common CommandsMeaning and Type DescriptionESE Bit Configuration of Standard Event Status Enable RegisterESE ESR?IDN? OPCOPC? PSC OPT?RCL RCLRST SAV SRESRE Bit Configuration of Status Byte Register STB?TRG TST? Description of Subsystem CommandsWAI AborCalauto Subsystem Tree Diagram Calibration SubsystemCalcurr Calauto 1 Calauto OnceCalcurrlev CalpassCalstat CalsaveCalvolt CalvoltlevCurr CalvoltprotCurr 500 MA Currlev CurrmodeCurrprotstat OFF CurrprotstatCurrtrig Currtrig 1200 MA CurrlevtrigListcoun Init Initcont 1 Initcont onListcoun Listcoun INF ListcurrListdwel LISTCURRPOIN?LISTDWELPOIN? ListstepListvolt 2.0,2.5,3.0 Listvolt MAX,2.5,MIN ListvoltLISTVOLTPOIN? MEASCURR? MEASVOLT?Outpprot Outp Outpstat ON,NORELAYOutprel Outpprotcle Outpprotdel 75E-1Outprelpol NormOutpttlt 1 Outpttlt OFF OutpttltOutpttltlink Outpttltsour LinkSTATOPEREVEN? STATOPER?STATOPERCOND? StatoperenabStatpres Stat Oper NTR 32 Stat Oper PTRSTATQUESEVEN? STATQUES?STATQUESCOND? Stat Ques COND?SYSTVERS? SYSTERR?Trigger Subsystem TrigTrigdel Trig Trig IMMTrigdel .25 Trigdel MAX TriglinkVoltlev VoltVoltmode Voltmode List Voltmode FIXVOLTSENSSOUR? VolttrigVolttrig 1200 MV Voltlevtrig Link Parameter List Power Module Programming ParametersStatus Register Bit Configuration Power Module Status StructureStatus Reporting Operation Status GroupBit Signal Bit Configurations of Status Registers Meaning Status Questionable Commands QueryQuestionable Status Group Standard Event Status Group Power Module Status ModelStatus Byte Register Output QueueLocation Of Event Handles Examples Initial Conditions At Power OnStatquesptr 18ENAB Statoperptr 5376ENABSTATOPEREVEN?QUESEVEN? Statoperptr 1024NTR Statoperenab 1024*SRESynchronizing Power Module Output Changes Trigger SubsystemModel of Fixed-Mode Trigger Operation Delaying State Idle StateInitiated State INITiateCONTinuous Command Model of List Mode Trigger OperationTrigger Status and Event Signals Output Change StateOutpttltsour List Subsystem Automatically Repeating a List Listvolt 3.0,3.25,3.5,3.75 Listdwel 10,10,25,40Listcurr 2,3,12,15 Triggering a ListTiming diagrams of Liststep Operation DFI Discrete Fault Indicator Subsystem Scpi Command CompletionRI Remote Inhibit Subsystem Power Module Hardware Error Messages Error MessagesSystem Error Messages Standard Event Status Register Error Bits222 -223 -241 -310 -330 -350 -400 -410 -420 -430 Scpi Approved Commands Scpi Confirmed CommandsScpi Conformance Information Scpi VersionNon-SCPI Commands Application Programs Application 1. Sequencing Multiple Modules During Power Up Variations On This Implementation Figure B1-1. Block Diagram of Application #1Figure B1-2. Timing Diagram of Application #1 Enable Backplane TTL Trigger Drive Reset and Clear ModuleEnable Output Enable Response to TriggerImplementation Details How The MPS Implements The Solution MPS Set Up Figure B2-1. Block Diagram of Application #2 Enable TTL Trigger Drive When a CV-TO-CC Transition OccursEnable Response to TTL Trigger Start AT 15Application 3. Controlling Output Voltage Ramp Up at Turn On Figure B3-1. Simulating a Slow Voltage Ramp Generating the Desired Voltage Ramp for Application #3 Start Voltage for Ramp Option BaseStop Voltage for Ramp SecondsFigure B4-1. Voltage Waveform for Application #4 Application 4. Providing Time-Varying VoltagesModule set up Variations On This Implementation No Delay Before Protection Occurs Enable OCPEnable Detection of OC Condition Enables Detection on Positive TRANSITION, I.EApplication 5. Providing Time-Varying Current Limiting Figure B5-1. Typical DUT Current vs. Time Implementation Details How The MPS Implements The Sequence Current Limit Data GO to 12 V When TriggeredDwell Time Data SET to GET Current from ListNominal 12 Application 6. Output Sequencing Paced by the ComputerMPS Set Up Figure B6-1. Block Diagram of Application #6 Supply Limit Conditions These are the BiasTo be Tested Number of Bias Supply Limit C0MBINATIONSReturn Overview Of Application Advantages/Benefits Of The MPS Solution Figure B7-1. Block Diagram of Application #7 When IT Completes the LIST. OPC Generates SRO When the Module Indicates SIC Step CompletedEnable SRQ Interrupt Enable Intr Identify Handler SubroutineSupplemental Information CMD$ = Initiate ‘ Enable Trigger to Start List CMD$ = Output on ‘ Enable Output‘ Conversion to Send Real Numbers Over the BUS CMD$ = Voltmode List ‘ SET to GET Voltage from ListWaiting for Trigger BIT 5 of the Operation Status Register Call Iooutputs SLOTO, CMDS, LCONDITION.DATA = WendIf IBSTA% 0 then Goto ‘ AS Part of the Command String ‘ Disable Auto Serial Poll‘ Program N3.BAS ‘ INSTRUMENT.NAME$ = Sloto‘ General Error Handler If IBSTA% 0 then Goto Selected AS a Trigger SourceStop Dwell = ramptime Application #3 Controlling Voltage Ramp UP AT Turn onTo terminate the iooutputa Int error Char *badstring If error != EOl enabled for both read and write Strcatvlist, vpoint This is a generalized error checking routine Index IndexIndex Index Index United States Latin America Agilent Sales and Support OfficesManual Updates