Agilent Technologies 66lxxA manual Statques?, Statqueseven?, Statquescond?, Stat Ques COND?

Page 44

STAT:QUES?

This command returns the value of the Questionable Event register. The Event register is a read-only register which holds (latches) all events that are passed by the Questionable NTR and/or PTR filter. Reading the Questionable Event register clears it.

Query Syntax

STATus:QUEStionable[:EVENt]?

Parameters

(None)

 

Returned Parameters

<NR1>

(Register Value)

Examples

STAT:QUES:EVEN?

Related Commands

*CLS

STAT:QUES:NTR STAT:QUES:PTR

STAT:QUES:COND?

This query returns the value of the Questionable Condition register. That is a read-only register which holds the real-time (unlatched) questionable status of the power module.

Query Syntax

STATus:QUEStionable:CONDition?

Example

STAT: QUES: COND?

Returned Parameters

<NR1>

(Register value)

Related Commands

(None)

 

STAT:QUES:ENAB

This command sets or reads the value of the Questionable Enable register. This register is a mask for enabling specific bits from the Questionable Event register to set the questionable summary (QUES) bit of the Status Byte register. This bit (bit 3) is the logical OR of all the Questionable Event register bits that are enabled by the Questionable Status Enable register.

Command Syntax

STATus:QUEStionable:ENABle <NRf>

Parameters

0 to 32727

Suffix

(None)

Default Value

0

Example

STAT:QUES:ENAB 18

Query Syntax

STATus:QUEStionable:ENABle?

Returned Parameters

<NR1> (Register value)

Related Commands

STAT:QUES:EVEN?

STAT:QUES:NTRPTR Commands

These commands allow the values of the Questionable NTR (Negative-Transition) and PTR (Positive-Transition) registers to be set or read. These registers serve as polarity filters between the Questionable Enable and Questionable Event registers to cause the following actions:

When a bit of the Questionable NTR register is set to 1, then a 1-to-0 transition of the corresponding bit of the Questionable Condition register causes that bit in the Questionable Event register to be set.

When a bit of the Questionable PTR register is set to 1, then a 0-to-I transition of the corresponding bit in the Questionable Condition register causes that bit in the Questionable Event register to be set.

If the same bits in both NTR and PTR registers are set to 1, then any transition of that bit at the Questionable Condition register sets the corresponding bit in the Questionable Event register.

If the same bits in both NTR and PTR registers are set to 0, then no transition of that bit at the Questionable Condition register can set the corresponding bit in the Questionable Event register.

Note

Setting a bit in the PTR or NTR filter can of itself generate positive or negative events in the

 

corresponding Questionable Event register.

 

 

Language Dictionary 45

Image 44
Contents Agilent Part No Microfiche Part No Update April Programming GuideSafety Guidelines Contents Abor Status Reporting Synchronizing Power Module Output Changes Error MessagesIntroduction About This GuideDocumentation Summary External ReferencesVXIplug&play Power Products Instrument Drivers Downloading and Installing the DriverAccessing Online Help Supported ApplicationsGpib Capabilities Of The Power Module Introduction To ProgrammingModule Gpib Address Introduction To ScpiRST *IDN? *SRE Volt LEV Prot Curr Voltlev 8.0 Prot 8.8 CURR?Outpprotdel Traversing the Command Tree Effect of Optional HeadersOutputprotectionclear STATUSOPERATIONCONDITION? OUTPUTPROTECTIONCLEARSTATUSOPERATIONCONDITION?Voltagelevel 7PROTECTION 8CURRENTLEVEL 3MODE List Volttrig 7.5INIT*TRG Outp OFF*RCL 2OUTP onSymbol Numerical Data Formats Talking FormatsListening Formats Suffixes and Multipliers Class Unit Unit with MultiplierSystem Considerations Assign @PM3TOError Handling Agilent Basic ControllersUsing the National Instruments Gpib Interface Sending the Command Volt 5 in Basic Sending the Command Volt 5 in CReceiving Data from the Module Receiving Module Data with BasicReceiving Module Data with C Language Dictionary IntroductionDescription Of Common Commands CLSMeaning and Type DescriptionBit Configuration of Standard Event Status Enable Register ESEESE ESR?OPC? IDN?OPC OPT? PSCRST RCLRCL SRE SAVSRE TRG Bit Configuration of Status Byte RegisterSTB? Description of Subsystem Commands TST?WAI AborSubsystem Tree Diagram Calibration Subsystem CalautoCalauto 1 Calauto Once CalcurrCalcurrlev CalpassCalsave CalstatCalvolt CalvoltlevCalvoltprot CurrCurr 500 MA Currlev CurrmodeCurrprotstat Currprotstat OFFCurrtrig Currtrig 1200 MA CurrlevtrigInit Initcont 1 Initcont on ListcounListcoun Listcoun INF ListcurrLISTCURRPOIN? ListdwelLISTDWELPOIN? ListstepListvolt Listvolt 2.0,2.5,3.0 Listvolt MAX,2.5,MINLISTVOLTPOIN? MEASCURR? MEASVOLT?Outp Outpstat ON,NORELAY OutpprotOutpprotcle Outpprotdel 75E-1 OutprelOutprelpol NormOutpttlt Outpttlt 1 Outpttlt OFFOutpttltlink Outpttltsour LinkSTATOPER? STATOPEREVEN?STATOPERCOND? StatoperenabStat Oper NTR 32 Stat Oper PTR StatpresSTATQUES? STATQUESEVEN?STATQUESCOND? Stat Ques COND?SYSTERR? SYSTVERS?Trigger Subsystem TrigTrig Trig IMM TrigdelTrigdel .25 Trigdel MAX TriglinkVolt VoltlevVoltmode Voltmode List Voltmode FIXVolttrig 1200 MV Voltlevtrig VOLTSENSSOUR?Volttrig Power Module Programming Parameters Link Parameter ListPower Module Status Structure Status Register Bit ConfigurationStatus Reporting Operation Status GroupQuestionable Status Group Bit Signal Bit Configurations of Status Registers MeaningStatus Questionable Commands Query Power Module Status Model Standard Event Status GroupLocation Of Event Handles Status Byte RegisterOutput Queue Initial Conditions At Power On ExamplesStatoperptr 5376ENAB Statquesptr 18ENABSTATOPEREVEN?QUESEVEN? Statoperptr 1024NTR Statoperenab 1024*SREModel of Fixed-Mode Trigger Operation Synchronizing Power Module Output ChangesTrigger Subsystem Initiated State Delaying StateIdle State Model of List Mode Trigger Operation INITiateCONTinuous CommandTrigger Status and Event Signals Output Change StateOutpttltsour List Subsystem Listvolt 3.0,3.25,3.5,3.75 Listdwel 10,10,25,40 Automatically Repeating a ListListcurr 2,3,12,15 Triggering a ListTiming diagrams of Liststep Operation RI Remote Inhibit Subsystem DFI Discrete Fault Indicator SubsystemScpi Command Completion Error Messages Power Module Hardware Error MessagesSystem Error Messages Standard Event Status Register Error Bits222 -223 -241 -310 -330 -350 -400 -410 -420 -430 Scpi Confirmed Commands Scpi Approved CommandsScpi Conformance Information Scpi VersionNon-SCPI Commands Application Programs Application 1. Sequencing Multiple Modules During Power Up Figure B1-1. Block Diagram of Application #1 Variations On This ImplementationFigure B1-2. Timing Diagram of Application #1 Reset and Clear Module Enable Backplane TTL Trigger DriveEnable Output Enable Response to TriggerImplementation Details How The MPS Implements The Solution MPS Set Up Figure B2-1. Block Diagram of Application #2 When a CV-TO-CC Transition Occurs Enable TTL Trigger DriveEnable Response to TTL Trigger Start AT 15Application 3. Controlling Output Voltage Ramp Up at Turn On Figure B3-1. Simulating a Slow Voltage Ramp Generating the Desired Voltage Ramp for Application #3 Option Base Start Voltage for RampStop Voltage for Ramp SecondsApplication 4. Providing Time-Varying Voltages Figure B4-1. Voltage Waveform for Application #4Module set up Variations On This Implementation Enable OCP No Delay Before Protection OccursEnable Detection of OC Condition Enables Detection on Positive TRANSITION, I.EApplication 5. Providing Time-Varying Current Limiting Figure B5-1. Typical DUT Current vs. Time Implementation Details How The MPS Implements The Sequence GO to 12 V When Triggered Current Limit DataDwell Time Data SET to GET Current from ListApplication 6. Output Sequencing Paced by the Computer Nominal 12MPS Set Up Figure B6-1. Block Diagram of Application #6 These are the Bias Supply Limit ConditionsTo be Tested Number of Bias Supply Limit C0MBINATIONSReturn Overview Of Application Advantages/Benefits Of The MPS Solution Figure B7-1. Block Diagram of Application #7 When the Module Indicates SIC Step Completed When IT Completes the LIST. OPC Generates SROEnable SRQ Interrupt Enable Intr Identify Handler SubroutineSupplemental Information CMD$ = Output on ‘ Enable Output CMD$ = Initiate ‘ Enable Trigger to Start List‘ Conversion to Send Real Numbers Over the BUS CMD$ = Voltmode List ‘ SET to GET Voltage from ListCall Iooutputs SLOTO, CMDS, L Waiting for Trigger BIT 5 of the Operation Status RegisterCONDITION.DATA = Wend‘ Disable Auto Serial Poll If IBSTA% 0 then Goto ‘ AS Part of the Command String‘ Program N3.BAS ‘ INSTRUMENT.NAME$ = SlotoStop ‘ General Error HandlerIf IBSTA% 0 then Goto Selected AS a Trigger Source Application #3 Controlling Voltage Ramp UP AT Turn on Dwell = ramptimeTo terminate the iooutputa Int error Char *badstring If error != EOl enabled for both read and write Strcatvlist, vpoint This is a generalized error checking routine Index IndexIndex Index Index Agilent Sales and Support Offices United States Latin AmericaManual Updates