Emerson Process Management 3051N manual Sensor Trim, Urv

Page 28

Rosemount 3051N

FIGURE 2-7. Transmitter Data

Flow with Calibration Options.

Sensor

Signal

Sensor

Input

Pressure

Reference Manual

00809-0100-4808, Rev CA

June 2008

Transmitter Ranged 0 to 100 inH2O

 

Transmitter Electronics Module

 

Microprocessor

 

 

Digital PV

 

 

HART Communicator

Output Device

Analog Output

 

20.00 mA

 

Input Device

 

 

3051:PT-4001

Online

1 Device Setup

2

PV

100.00 inH2O

3

AO

20.00 mA

4

LRV

0.00 inH2O

5

URV

100.00 inH2O

NOTE

Value on PV line should equal the input pressure. Value on AO line should equal the output device reading.

Deciding Which Trim Procedure to Use

Sensor Trim

To decide which trim procedure to use, you must first determine whether the analog-to-digital section or the digital-to-analog section of the transmitter electronics is in need of calibration. To do so, refer to Figure 2-7and perform the following procedure:

1.Connect a pressure source, a HART Communicator, and a digital readout device to the transmitter.

2.Establish communication between the transmitter and the communicator.

3.Apply pressure equal to the upper range point pressure (100 inH20, for example).

4.Compare the applied pressure to the Process Variable (PV) line on the Communicator On-line Menu. IF the PV reading on the communicator does not match the applied pressure, and you are confident that your test equipment is accurate, THEN perform a sensor trim.

5.Compare the Analog Output (AO) line on the communicator on-line menu to the digital readout device. IF the AO reading on the communicator does not match the digital readout device, and you are confident that your test equipment is accurate, THEN perform an output trim.

You can trim the sensor using either the full trim or the zero trim function. The trim functions vary in complexity, and their use is application-dependent. Both trim functions alter the transmitter’s interpretation of the input signal.

A zero trim is a single-point adjustment. It is useful for compensating for mounting position effects and is most effective when performed with the transmitter installed in its final mounting position. Since this correction maintains the slope of the characterization curve, it should not be used in place of a full trim over the full sensor range.

2-16

Image 28
Contents Reference Manual Page Rosemount 3051N Return of Material Old Changes from June 2006 to JuneChanges Rosemount 3051N Table of Contents Troubleshooting InstallationSpecifications Reference Data Appendix a OptionsHart Communicator Glossary Index Using this Manual Section IntroductionRosemount 3051N Overview Safety Messages Transmitter FunctionsTransmitter Alarm Level VerificationSecurity Configuring Transmitter Alarm and Security Jumper Procedure Physical Removal Local Zero and Span Local KeysElectronics Board Setting the Loop to Manual Wiring Diagrams Bench Hook-up Wiring Diagrams Field Hook-up Check Output Review Configuration DataProcess Variables Sensor Temperature Basic SetupSet Process Variable Units Set OutputRerange Rerange with a Communicator OnlyRerange with a Pressure Input Source and a Communicator Span and Zero Adjustment Buttons Detailed Setup Diagnostics ServiceLoop Test Transmitter TestCalibration Transmitter Bench Calibration Tasks Field Calibration Tasks Configure the Analog Output Parameters Calibration OverviewSensor Trim URVZero Trim Typical Zero vs Non-zero-Based Application IllustrationsFull Trim Digital Trim Connection Drawing 4-20 mA TransmittersDigital-to-Analog Trim Using Other Scale Recall Factory Trim Recall Factory Trim- Sensor TrimRecall Factory Trim- Analog Output Analog Output TrimZero Effect HTc = URV + S URV Ps Rosemount 3051N Section Installation Rosemount 3051N Typical Installation Flowchart Special Draft Range Considerations General ConsiderationsMechanical Considerations 156 181 16 x 11/4 Bolts for Mounting to 54.1 Transmitter 120 127 66.8 Traditional Flange Option Code H2 Dimensional Drawing Mounting Rosemount 3051N GAS or Liquid Service GAS Service Steam Service Power Supply Process Connections Housing RotationElectrical Considerations Wiring Power Supply Load LimitationsGrounding the Transmitter Case Access Requirements Cover InstallationEnvironmental Considerations Troubleshooting Symptom Corrective Actions Returning Rosemount Products and MaterialsNuclear Specifications SeismicModel Range Code Hydrostatic Test Pressure Performance Specifications Ambient Temperature Effect12Reference Accuracy DriftPower Supply Effect Load Effect Mounting Position Effect Overpressure Effect Static Pressure EffectRange Code Overpressure Effect Range Code Static Pressure Zero Effect1Functional Specifications ServiceTemperature Limits OutputRange Minimum Span Upper URL Lower LRL Span and Zero, Zero Elevation, SuppressionRange Code Minimum Time Constant Tc Including Dead Time Td Maximum Working Pressure12Static Pressure Limits Overpressure Limits Burst PressurePhysical Specifications Materials of Construction Option Code Description Add Ordering Information Configuration Information Housing Material Conduit Entry SizeMounting Bracket Options Meters optionalDate  On Rosemount 3051N Exploded View with Coplanar Process Flange Rosemount 3051N Rosemount 3051N Overview Safety Messages LCD Meter Section OptionsCustom Meter Configuration Installing the Meter Exploded View of the Rosemount 3051N with Optional LCD MeterRosemount 3051N Diagnostic Messages ErrorPress Limit Operation Mounting BracketsTraditional Flange H2 Transient Protection Terminal Block T1Transient Protection Terminal Block T1 Rosemount 3051N Introduction Safety Messages Appendix a Hart CommunicatorRosemount 3051N Online Menu Function Hart Fast Key Sequence Figure A-3. Rosemount Hart terminal access door Connections and HardwareFigure A-4. Bench Hook-up MA Transmitters Communicator Keys RosemountAction Keys Alphanumeric and Shift Keys Function KeysData Entry Fast Key Sequences Fast Key Sequence Conventions Fast Key Sequence ExampleMenus Functions Main MenuOnline Menu Touch Alphanumeric Keys Multifunction LEDTouch Screen Multifunction LED Processing IndicationRosemount 3051N Fast Key Sequences Hot Key options Diagnostic MessagesMessage Description Rosemount 3051N Uploadvariable Rosemount 3051N Rosemount 3051N Glossary Smart Family Index 00809-0100-4808, Rev CA June Security Page ¢00809-0100-4801V¤

3051N specifications

The Emerson Process Management 3051N is a state-of-the-art pressure transmitter that exemplifies precision and reliability in process automation. Designed for a wide range of industrial applications, the 3051N is celebrated for its advanced features, innovative technologies, and robust construction, catering to the evolving needs of process industries.

One of the standout features of the 3051N is its exceptional accuracy. With a standard accuracy rating of ±0.075% of span, it ensures precise pressure measurements, critical for maintaining optimal process conditions. This high level of accuracy makes it suitable for applications in industries such as oil and gas, chemicals, and water treatment, where even minor deviations can lead to significant operational issues.

The 3051N employs Smart Pressure Technology, integrating digital communication capabilities with traditional analog systems. This technology allows for seamless interoperability with existing process control systems, providing users with vital data for diagnostics, calibration, and configuration via HART, FOUNDATION fieldbus, or Profibus protocols. These capabilities lead to enhanced process efficiency and reduced downtime due to effective predictive maintenance.

Another notable characteristic of this transmitter is its robust design. The 3051N is built to endure harsh industrial environments, with a rugged housing that is resistant to corrosive and hazardous conditions. Its wide operating temperature range, typically from -40°C to 85°C, coupled with various diaphragm materials, ensures that it can function effectively across diverse applications.

Moreover, the Emerson 3051N incorporates advanced predictive diagnostics, enabling users to monitor the health of the transmitter continuously. This feature alerts operators to potential issues before they escalate, facilitating proactive maintenance strategies that can significantly lower operational costs.

The flexible configuration options offered by the 3051N also enhance its usability. Users can select from a variety of pressure ranges, process connection types, and electrical connections, making it easy to customize the transmitter to fit specific application needs.

In conclusion, the Emerson Process Management 3051N pressure transmitter is a versatile and highly efficient device that integrates advanced technology with robust design and exceptional accuracy. Its ability to adapt to various industrial demands while providing predictive diagnostics makes it a preferred choice for professionals seeking reliability and precision in process management.