IBM Release 1.93 manual Farfield, Flux, Integral

Page 28

FARFIELD

Computes the far-field limit of the fields at a given plane, specified

 

as xlo x xhi, ylo y yhi, zlo z zhi. Because this range must

 

specify a plane, the upper and lower limits of one axis must be the

 

same to within basicstep/2. The coordinates will be correctly

 

rounded to integral numbers of cells. We assume that the fields

 

propagate through an infinite half-space of refractive index n (which

 

obviously must be lossless). The refractive index is taken to be the

 

real part of the index in the actual model at the centre of the

 

supplied plane, {xmin x xmax, ymin yymax, zmin z zmax}.

 

The parameter direction can be up or down depending on which

 

direction we’re interested in. Internally, POEMS uses both E and H

 

field information to separate out the incoming and outgoing fields,

 

so the computed far field spectrum wht direction=down can be very

 

different from that with direction=up. At present this statement

 

produces bitmaps of s- and p-polarized field amplitude and phase at

 

each point (u, v) in the pupil plane.

 

Currently the FARFIELD statement can be applied only on planes of

 

uniform granularity, i.e. basicstep must be the same in all

 

subdomains cut by the given plane.

 

Parameters: name xlo xhi ylo yhi zlo zhi file direction

 

 

 

 

FLUX

Computes an integral of the Poynting vector through the given

 

surface, in the inward direction. This isn’t quite the same as using

 

the INTEGRAL statement directly, because it adds the ability to

 

specify an interior point. A positive flux is going in the direction

 

towards from (xInside, yInside, zInside).

 

Parameters: name xinside yinside zinside xlo xhi ylo yhi zlo zhi

 

 

 

 

INTEGRAL

Computes a volume or surface integral of a given field function by

 

summing all the blocks lying in the specified region. If the region

 

has a nonzero thickness (after rounding to the nearest multiple of

 

BASICSTEP), it’s normalized as a volume integral; if two have a

 

nonzero thickness, it’s normalized as a surface integral of the broad

 

face of the region; and if only one dimension has a nonzero size, it’s

 

normalized as a line integral. Specify the integrand field or

 

postprocess quantity as variable, and make sure there’s a matching

 

statement that generates an array of the given quantity, because it

 

won’t be done automatically.

 

Parameters: name variable xlo xhi ylo yhi zlo zhi

 

 

 

 

24

Image 28
Contents IBM T. J. Watson Research Center Yorktown Heights, NY Page IBM T. J. Watson Research Center Yorktown Heights, NY Using Poems HOW Poems WorksChapter Introduction MotivationPhilosophy Structure OptimizationPage Poems system organization Front-End Script poems.cmd Program OrganizationScript Operation Fdtd Engine FIDO/TEMPEST Postprocessor EmpostVisualization System VIS5D Cluster ControlParallel Processing Poems Command-Line Options Command ReferenceGlobal Group Freq LambdaFunction HostsWhich means that the host’s predefined hostname is not used MacdefMacro PrintSET RandomseedSimulator World Group TitleVerbose BoundaryMaterial Group BasicstepXrange Yrange DefineParameters epsReal epsImag muReal muImag Block Object GroupFAN Hollowbox GratingTiledplane 3DCURVE CurveCylinder Source Group Command Group Output GroupPostprocess Group FieldCAD WebpageFlux FarfieldIntegral List ModematchMovie MOVIE3DDissipation SliceVariables Optimize GroupGuess Store LimitPenalty Merit Parameters Schedule GroupRange Computational Domain SymmetryObjects Perfectly-Matched Layers MaterialsPlane Waves Page Beam Sources Optimization Merit FunctionsPhase uniformity across a plane Worked Example Optimizing a V Antenna 10 Optimized V antenna refractivePage Worked Example Glass Ridge Waveguide to Free Space Coupler Worked Example Doped Silica Waveguide ModePredefined Constants Reserved Names ConfinePredefined Mathematical Functions Arithmetic OperatorsLogical Operators ABSAcos AcoshATAN2 CeilCOS ElintkIntegral 20. LNMAX MINRandom ROOT1DRound SignMaterial Parameter Functions Analytical Pupil FunctionsFlattop Startup and Steady State Tempest and General Fdtd InformationTime step Page Appendix A. V-Antenna Optimization Run Poems Input DIPOLE2I.PAR END Material END World Subdomain ALL END ObjectEND Source END CommandEND Output END Optimize Phaseex END Postprocess AmplexPage Page Page END Tempest Input File DIPOLE2I.PAR.IN Written by Phil Hobbs Pages of pointsource statements omitted Postprocessor orders DIPOLE2I.ORDERS ALLDIPOLE2IEXI DIPOLE2IEXQDIPOLE2IEYI DIPOLE2IEYQDIPOLE2IEZI DIPOLE2IEZQMiddleflux POSTPROC.1.NAMEArray Amplex POSTPROC.1.PARMSTRINGDIPOLE2IPHASEEX ArrayPOSTPROC.2.PARMSTRING FF2DIPOLE2IPX POSTPROC.6.NAMEArray Poyntingz DIPOLE2IPZPOSTPROC.9.PARMSTRING POSTPROC.10.PARMSTRINGPOSTPROC.11.NAME Slice IndexnSlice Poyntingz POSTPROC.13.COMPARISONDOMAINDIPOLE2IPZXY0.BMP POSTPROC.14.NAMEPOSTPROC.16.COMPARISONDOMAIN DIPOLE2IPXZX0.BMPPOSTPROC.17.NAME Slice AmplexDIPOLE2IPHASEEXXY0.BMP DIPOLE2IPHASEEXZX0.BMPPOSTPROC.20.COMPARISONDOMAIN DIPOLE2IDISSZX0.BMPPOSTPROC.24.COMPARISONDOMAIN DIPOLE2IEXQZX0.BMPRun Results DIPOLE2I.SIMPLEX Page Page Page Page Page Fdtd and Tempest Tempest patchesAdvice common to all or most Fdtd programs Tempest limitationsWindow System Configuration Sample X11 ConfigurationRelease Notes Running Vis5DWish list Beta Release Limitations Page Page Emdenormal Emunderflow IndexMatlab Maxordersources 81 Maxpointsources