IBM Release 1.93 manual Analytical Pupil Functions, Material Parameter Functions, Flattop

Page 52

3.9. Analytical Pupil Functions

POEMS knows about the following analytical pupil functions:

GAUSSIAN

TEM00 Gaussian beam

AIRY

Uniform circular disc pupil function, resulting in an Airy function at

 

the focus E=2J1(krNA)/(krNA), the jinc function.

FLATTOP

Pupil function is a jinc times a circularly-symmetrical Hamming

 

window, resulting in a focused beam with a flat top and smoothly

 

sloping sides. The actual pupil function is

 

E(u,v)=2(0.54+0.46cos(πρ))J1(6πρ)/(6πρ), where ρ=(u2+v2)1/2/NA.

3.10. Material Parameter Functions

These functions are linearly-interpolated values generated from tables in Palik & Ghosh, Optical Constants of Materials. They are parameterized by wavelength in metres, and are in general much more precise than they are accurate. It isn’t that the measurements are bad, or that the interpolation is too crude, it’s just that they describe measurements on particular films prepared with extreme care. Most optical devices are made with films whose density is not 100%, whose structure is columnar rather than amorphous or crystalline, and whose stoichiometry is far from perfect, so these values may not accurately predict the refractive indices of your actual materials. "Optical constants of thin films" is an oxymoron, so don’t take these values too seriously.

These discrepancies are perhaps most serious in the case of fused silica. Commercial fused silica usually contains some OH groups due to the silane flame deposition technique used to make fused silica boules. These OH groups are harmless in the visible, but out at 2 µm and beyond (especially near 2.7 µm) they may make the material almost opaque, even though the function SiO2_K() predicts low absorption there. (The best infrared-grade fused silica is indeed transparent in this region.) Of course, given the memory and processor speed constraints of current machines (say 2 GB and 3 GHz), the opacity of OH hasn’t much of a chance to be felt within the bounds of a FDTD simulation.

Au_N(lambda), Au_K(lambda)

Gold

0.5636 — 5.166 µm

Ni_N(lambda), Ni_K(lambda)

Nickel

0.5636 — 5.166 µm

Cu_N(lambda), Cu_K(lambda)

Copper

0.5636 — 5.166 µm

Si_N(lambda), Si_K(lambda)

Crystalline silicon

0.5636 — 5.166 µm

aSi_N(lambda), aSi_K(lambda)

amorphous silicon

1.03 — 1.52 µm

SiN_N(lambda), SiN_K(lambda)

Silicon Nitride

under construction

SiO2_N(lambda), SiO2_K(lambda)

Fused silica

0.5636 — 5.166 µm

Corning1737_N(lambda),

Corning 1737 glass

0.4360 - 1.541

µm"

 

 

 

48

Image 52
Contents IBM T. J. Watson Research Center Yorktown Heights, NY Page IBM T. J. Watson Research Center Yorktown Heights, NY Using Poems HOW Poems WorksChapter Introduction MotivationPhilosophy Structure OptimizationPage Poems system organization Front-End Script poems.cmd Program OrganizationScript Operation Fdtd Engine FIDO/TEMPEST Postprocessor EmpostVisualization System VIS5D Cluster ControlParallel Processing Poems Command-Line Options Command ReferenceGlobal Group Freq LambdaFunction HostsWhich means that the host’s predefined hostname is not used MacdefMacro PrintSET RandomseedSimulator World Group TitleVerbose BoundaryMaterial Group BasicstepXrange Yrange DefineParameters epsReal epsImag muReal muImag Block Object GroupFAN Hollowbox GratingTiledplane 3DCURVE CurveCylinder Source Group Command Group Output GroupPostprocess Group FieldCAD WebpageFlux FarfieldIntegral List ModematchMovie MOVIE3DDissipation SliceVariables Optimize GroupGuess Store LimitPenalty Merit Parameters Schedule GroupRange Computational Domain SymmetryObjects Perfectly-Matched Layers MaterialsPlane Waves Page Beam Sources Optimization Merit FunctionsPhase uniformity across a plane Worked Example Optimizing a V Antenna 10 Optimized V antenna refractivePage Worked Example Glass Ridge Waveguide to Free Space Coupler Worked Example Doped Silica Waveguide ModePredefined Constants Reserved Names ConfinePredefined Mathematical Functions Arithmetic OperatorsLogical Operators ABSAcos AcoshATAN2 CeilCOS ElintkIntegral 20. LNMAX MINRandom ROOT1DRound SignMaterial Parameter Functions Analytical Pupil FunctionsFlattop Startup and Steady State Tempest and General Fdtd InformationTime step Page Appendix A. V-Antenna Optimization Run Poems Input DIPOLE2I.PAR END Material END World Subdomain ALL END ObjectEND Source END CommandEND Output END Optimize Phaseex END Postprocess AmplexPage Page Page END Tempest Input File DIPOLE2I.PAR.IN Written by Phil Hobbs Pages of pointsource statements omitted Postprocessor orders DIPOLE2I.ORDERS ALLDIPOLE2IEXI DIPOLE2IEXQDIPOLE2IEYI DIPOLE2IEYQDIPOLE2IEZI DIPOLE2IEZQMiddleflux POSTPROC.1.NAMEArray Amplex POSTPROC.1.PARMSTRINGDIPOLE2IPHASEEX ArrayPOSTPROC.2.PARMSTRING FF2DIPOLE2IPX POSTPROC.6.NAMEArray Poyntingz DIPOLE2IPZPOSTPROC.9.PARMSTRING POSTPROC.10.PARMSTRINGPOSTPROC.11.NAME Slice IndexnSlice Poyntingz POSTPROC.13.COMPARISONDOMAINDIPOLE2IPZXY0.BMP POSTPROC.14.NAMEPOSTPROC.16.COMPARISONDOMAIN DIPOLE2IPXZX0.BMPPOSTPROC.17.NAME Slice AmplexDIPOLE2IPHASEEXXY0.BMP DIPOLE2IPHASEEXZX0.BMPPOSTPROC.20.COMPARISONDOMAIN DIPOLE2IDISSZX0.BMPPOSTPROC.24.COMPARISONDOMAIN DIPOLE2IEXQZX0.BMPRun Results DIPOLE2I.SIMPLEX Page Page Page Page Page Fdtd and Tempest Tempest patchesAdvice common to all or most Fdtd programs Tempest limitationsWindow System Configuration Sample X11 ConfigurationRelease Notes Running Vis5DWish list Beta Release Limitations Page Page Emdenormal Emunderflow IndexMatlab Maxordersources 81 Maxpointsources