IBM Release 1.93 manual List, Modematch

Page 29

LIST

Stores a list of field values as ASCII floating point numbers, suitable

 

for reading into a spreadsheet or a plotting program such as

 

GNUPLOT. The row-column arrangement of a 3-dimensional list

 

file depends on the value of orientation. Coordinate axes are always

 

taken in cyclic order, with the leftmost position in the first line

 

corresponding to the minimum of all coordinates; in a 2-D list in XY

 

orientation (perpendicular to Z), columns correspond to the x

 

coordinate and rows to the y coordinate. In YZ orientation, y goes

 

across columns and z goes down rows, and in ZX orientation, z

 

goes across columns and x down rows. (ZY is the same as YZ, and

 

XZ is the same as ZX--cyclic order is always preserved.) In a three-

 

dimensional list, the perpendicular variable is most slowly varying.

 

For example, in XY orientation, a 3-D list file with M planes (Z) N

 

rows (Y) and P columns (X) would have list N rows for the first

 

plane, another N for the second plane, and so on. The file format is

 

as follows, with integer indices i, j, and k corresponding to

 

coordinates x, y, and z.

 

Parameters: variable file orientation xlo xhi ylo yhi zlo zhi phase indexn

 

kmin kmax jmin jmax imin imax

 

lambda indexN dz dy dx

 

coordinates arrangement

 

(real, imag) (real, imag) (real, imag)....

 

(real, imag) (real, imag) (real, imag)....

 

...

 

(real, imag) (real, imag) (real, imag)....

 

The value of coordinates can be polar or rectangular, and arrangement

 

can be normal or FFT.

MODEFILE

A variation on the LIST command, for producing 2-D list files of Ex,

 

Ey, and Ez The appropriate file name additions are supplied

 

automatically.

 

Parameters: file orientation xlo xhi ylo yhi zlo zhi phase indexn

MODEMATCH

Computes the far-field pattern of the simulated fields, taken from

 

the given plane, and compares it with the analytically computed

 

pupil function requested. It returns the normalized overlap integral

 

of the two across the (u, v) plane. This is a complicated way of

 

saying that MODEMATCH returns the coupling efficiency from the

 

simulated plane to a receiver whose sensitivity pattern matches the

 

given pupil function, e.g. a fibre. Known pupil functions at present

 

are GAUSSIAN, AIRY, FLATTOP, and BESSJ0. The refractive index

 

is taken to be the real part of the index at the centre of the given

 

plane, as in the FARFIELD order.

25

Image 29
Contents IBM T. J. Watson Research Center Yorktown Heights, NY Page IBM T. J. Watson Research Center Yorktown Heights, NY HOW Poems Works Using PoemsMotivation Chapter IntroductionPhilosophy Optimization StructurePage Poems system organization Script Operation Program OrganizationFront-End Script poems.cmd Postprocessor Empost Fdtd Engine FIDO/TEMPESTCluster Control Visualization System VIS5DParallel Processing Global Group Command ReferencePoems Command-Line Options Lambda FreqFunction HostsMacdef Which means that the host’s predefined hostname is not usedPrint MacroSimulator RandomseedSET Title World GroupVerbose BoundaryBasicstep Material GroupXrange Yrange DefineParameters epsReal epsImag muReal muImag FAN Object GroupBlock Tiledplane GratingHollowbox Cylinder Curve3DCURVE Source Group Output Group Command GroupField Postprocess GroupCAD WebpageIntegral FarfieldFlux Modematch ListMOVIE3D MovieSlice DissipationGuess Optimize GroupVariables Penalty Merit LimitStore Range Schedule GroupParameters Symmetry Computational DomainObjects Materials Perfectly-Matched LayersPlane Waves Page Beam Sources Merit Functions OptimizationPhase uniformity across a plane 10 Optimized V antenna refractive Worked Example Optimizing a V AntennaPage Predefined Constants Worked Example Doped Silica Waveguide ModeWorked Example Glass Ridge Waveguide to Free Space Coupler Confine Reserved NamesArithmetic Operators Predefined Mathematical FunctionsABS Logical OperatorsAcos AcoshCeil ATAN2COS Elintk20. LN IntegralMAX MINROOT1D RandomRound SignFlattop Analytical Pupil FunctionsMaterial Parameter Functions Time step Tempest and General Fdtd InformationStartup and Steady State Page Appendix A. V-Antenna Optimization Run Poems Input DIPOLE2I.PAR END Material END Object END World Subdomain ALLEND Output END CommandEND Source END Optimize END Postprocess Amplex PhaseexPage Page Page END Tempest Input File DIPOLE2I.PAR.IN Written by Phil Hobbs Pages of pointsource statements omitted ALL Postprocessor orders DIPOLE2I.ORDERSDIPOLE2IEXI DIPOLE2IEXQDIPOLE2IEYQ DIPOLE2IEYIDIPOLE2IEZI DIPOLE2IEZQPOSTPROC.1.NAME MiddlefluxArray Amplex POSTPROC.1.PARMSTRINGArray DIPOLE2IPHASEEXPOSTPROC.2.PARMSTRING FF2POSTPROC.6.NAME DIPOLE2IPXArray Poyntingz DIPOLE2IPZPOSTPROC.10.PARMSTRING POSTPROC.9.PARMSTRINGPOSTPROC.11.NAME Slice IndexnPOSTPROC.13.COMPARISONDOMAIN Slice PoyntingzDIPOLE2IPZXY0.BMP POSTPROC.14.NAMEDIPOLE2IPXZX0.BMP POSTPROC.16.COMPARISONDOMAINPOSTPROC.17.NAME Slice AmplexDIPOLE2IPHASEEXZX0.BMP DIPOLE2IPHASEEXXY0.BMPPOSTPROC.20.COMPARISONDOMAIN DIPOLE2IDISSZX0.BMPDIPOLE2IEXQZX0.BMP POSTPROC.24.COMPARISONDOMAINRun Results DIPOLE2I.SIMPLEX Page Page Page Page Page Tempest patches Fdtd and TempestTempest limitations Advice common to all or most Fdtd programsSample X11 Configuration Window System ConfigurationWish list Running Vis5DRelease Notes Beta Release Limitations Page Page Matlab IndexEmdenormal Emunderflow Maxordersources 81 Maxpointsources