Bryant 355M-40-5, 355M-40-4 ÐHorizontal Right Tube Configuration, Location General

Page 11

CAP

COLLECTOR BOX DRAIN TUBE (BLUE)

 

COLLECTOR BOX TUBE (GREEN)

PLUG

COLLECTOR BOX TUBE (PINK)

CONDENSATE

TRAP

COLLECTOR BOX DRAIN TUBE

(BLUE AND WHITE STRIPED)

INDUCER HOUSING

DRAIN TUBE (VIOLET)

COLLECTOR BOX

EXTENSION TUBE

Fig. 11ÐHorizontal Right Tube Configuration

A93354

5.Route this extended tube (pink label) to condensate trap relief port connection.

6.Determine appropriate length, cut, and connect tube.

7.Clamp tube to relief port connection.

E. Condensate Trap Freeze Protection

Refer to Condensate Drain Protection section for recommenda- tions and procedures.

F.Construct a Working Platform

 

 

 

 

 

 

 

 

 

LEVEL

 

(0)

FRONT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TO

LEVEL (0)

 

12MAX

 

TO

 

 

 

 

 

 

12MAX

UPFLOW OR DOWNFLOW

FRONT

HORIZONTAL

Construct working platform where all required furnace clearances are met. (See Fig. 3 and 10.)

CAUTION: The condensate trap MUST be installed below furnace. See Fig. 4 for dimensions. The drain connection to condensate trap must also be properly sloped to an open drain.

NOTE: Combustion-air and vent pipes are restricted to a mini- mum length of 5 ft. (See Table 6.)

A93025

NOTE: For proper furnace operation, install furnace so that it is level or pitched forward within 1/2 in. to ensure proper condensate drainage from secondary heat exchangers.

Locate furnace as close to center of air distribution system as possible.

Locate furnace so combustion-air pipe lengths are not exceeded. Refer to Table 6.

NOTE: A 12-in. minimum offset pipe section is recommended with short (5 to 8 ft) vent systems. This recommendation is to reduce excessive condensate droplets from exiting the vent pipe. (See Fig. 10 or 29.)

LOCATION

I.GENERAL

When a furnace is installed so that supply ducts carry air to areas outside the space containing the furnace, return air must also be handled by ducts sealed to furnace casing. The ducts terminate outside the space containing the furnace to ensure there will not be a negative pressure condition within equipment room or space. Furnace may be located in a confined space without special provisions for dilution or ventilation air. This furnace must be installed so electrical components are protected from water.

Ð11Ð

CAUTION: If these furnaces are used during construc- tion when adhesives, sealers, and/or new carpets are being installed, make sure all combustion and circulating air requirements are followed. If operation of furnace is required during construction, use clean outside air for combustion and ventilation. Compounds of chlorine and fluorine, when burned with combustion air, form acids which will cause corrosion of heat exchangers. Some of these compounds are found in paneling, dry wall adhe- sives, paints, thinners, masonry cleaning materials, and many other solvents commonly used in the construction process.

Excessive exposure to contaminated combustion air will result in safety and performance related problems.

Image 11
Contents ÐMultipoise Orientations Ð1ÐUnit Size DimensionsÐ2Ð → ÐClearances to Combustibles Safety ConsiderationsElectrostatic Discharge ESD Precautions Minimum Inches Clearance To Combustible ConstructionCondensate Trap Location Factory-Shipped Orientation IntroductionApplications General II. Upflow ApplicationsCondensate Trap Location Alternate Upflow Orientation Ð5ÐCondensate Trap Field Drain Attachment Pressure Switch TubingÐ6Ð Ð7Ð III. Downflow ApplicationsCondensate Trap Location Condensate Trap TubingIV. Horizontal Left SUPPLY-AIR Discharge Applications Ð8ÐÐ9Ð Construct a Working PlatformHorizontal Right SUPPLY-AIR Discharge Applications ÐAttic Location and Working Platform Condensate Trap Tubing Location General ÐHorizontal Right Tube ConfigurationIII. Furnace Location Relative to Cooling Equipment II. LOW-FIRE only InstallationIV. Hazardous Locations Installation Leveling Legs if DesiredII. Installation in Upflow or Downflow Applications Width Ðopening DimensionsFurnace Plenum Opening Floor Opening Casing ÐDuct Flanges III. Installation in Horizontal Applications→ ÐBottom Filter Arrangement IV. Filter ArrangementÐfilter Information Bottom Closure PanelElectrical Connections WiringVI. GAS Piping Ðmaximum Capacity of PipeII -V Wiring → ÐHeating and Cooling Application Wiring DiagramÐWiring Diagram Amps Size III. AccessoriesÐelectrical Data II. COMBUSTION-AIR and Vent Piping Direct VentingRemoval of Existing Furnaces from Common Vent Systems NgpicOr doors which can be opened or Combustion-air opening ÐCOMBUSTION-AIR and Vent Pipe Termination ClearancesCombustion-Air and Vent Pipe Diameter Location Clearance FTCombustion-Air and Vent Pipe Attachment Example4001 to 5000³ Ðmaximum Allowable Pipe Length FT2001 to 3001 to8001 to 9000³ Ðmaximum Allowable Pipe Length FT6001 to 7000³ 7001 to 8000³III. Concentric Vent and COMBUSTION-AIR COMBUSTION-AIR Intake Housing Plug FittingTermination KIT Installation ÐRoof Termination Preferred 042040 042060 042080 060080 060100 060120 Extended Exposed Sidewall PipesTwo-Pipe Termination Kit Concentric Vent/Air Termination KitIII. Condensate Drain Protection IV. Multiventing and Vent TerminationsCondensate Drain General II. ApplicationÐConcentric Vent and Combustion-Air Roof HSI SELF-TEST ModeII. Heating Mode Sequence of OperationIII. Heating Modeðtwo Stage IV. Emergency Heat ModeCooling Mode VI. Heat Pump ModeVII. Continuous FAN Mode ÐWiring Schematic for 2-Speed Cooling ApplicationsSTART-UP Procedures General IX. Bypass Humidifier ModeDehumidification Mode XI. Zone ModeIII. Prime Condensate Trap with Water Ðair Conditioning A/C Airflow Setup Switch PositionÐcontinuous FAN CF Airflow Setup Switch Position Setup Switches SWÐblower OFF Delay Setup Switch Position Ðsetup Switch Description→ ÐRedundant Automatic Gas Valve AdjustmentsIV. Purge GAS Lines Set Gas Input RateBTU/CU FT 5000 Only4001 875 1.5825 7001775 1.5 8000Altitude Derate Multiplier Factor for U.S.A Ðaltitude Derate Multiplier for U.S.ACanada Sume the Orifice SIZE. Always Check and VerifySet Thermostat Heat Anticipator Set Temperature RiseCheck Safety Controls Check Primary Limit Control Ðgas Rate CU FT/HRChecklist II. Check Pressure SwitchesCombustion and Vent Piping ChecklistðinstallationCHECKLISTÐSTART-UP Load Calculation

355M-40-4, 355M-40-5 specifications

The Bryant 355M-40-5 and 355M-40-4 are innovative CNC cylindrical grinders designed to meet the demands of precision machining in various industrial applications. These machines stand out due to their robust construction, advanced technology, and versatile functionalities, which are critical for achieving high-quality grinding results.

One of the main features of the Bryant 355M-40-5 and 355M-40-4 is their precision grinding capability. With high spindle speeds and excellent rigidity, these grinders are engineered to deliver superior surface finishes even on complex geometries. The machines are equipped with advanced dressing systems that ensure consistent wheel profiles, enhancing performance and reducing cycle times.

The Bryant 355M-40-5 differentiates itself through its multi-axis capability, allowing for the grinding of intricate shapes and features without the need for extensive setup changes. Operators can easily program complex grinding sequences through the user-friendly interface, which supports both manual and automated operations. This flexibility is crucial in manufacturing environments that require quick turnaround times and adaptability to various workpieces.

Meanwhile, the Bryant 355M-40-4 focuses on efficiency and productivity, featuring a streamlined design that optimizes workflow. The machine is fitted with high-precision linear guides and ball screws, ensuring smooth and accurate movements during the grinding process. This results in minimal wear and tear, thereby extending the machine's lifespan and maintaining accuracy over time.

Key technologies incorporated into both models include state-of-the-art control systems that enable real-time monitoring and feedback during operations. This feature allows operators to make on-the-fly adjustments to optimize grinding parameters, leading to improved performance and reduced scrap rates. Additionally, the integration of automation solutions, such as robotic loading systems, enhances productivity by minimizing downtime and labor costs.

The Bryant 355M-40-5 and 355M-40-4 are built with durability in mind, utilizing high-strength materials that resist deformation and wear. Their thermal stability ensures consistent performance even under varying operating conditions, making them a reliable choice for high-volume production.

In summary, the Bryant 355M-40-5 and 355M-40-4 models are exemplary CNC cylindrical grinders that combine precision, efficiency, and advanced technology. Their features make them suitable for a wide range of grinding applications, from tool manufacturing to automotive components, ensuring that they remain competitive in the ever-evolving landscape of manufacturing technology.