Cisco Systems BC-23 manual Specifies a subinterface, Subinterface with the Vlan, Same bridge group

Page 11

Configuring Transparent Bridging

Transparent and SRT Bridging Configuration Task List

forwarding decision and only switch the traffic to local interfaces configured as belonging to the same VLAN broadcast domain. Router A provides an inter-VLAN mechanism that lets Router A function as a gateway for stations on a given LAN segment by transmitting VLAN encapsulated traffic to and from other switched VLAN domains or simply transmitting traffic in native (non-VLAN) format.

Figure 10 Inter-VLAN Connectivity between Multiple Switching Platforms

1

VLAN100

 

 

802.10 FDDI VLAN

 

 

 

 

VLAN100

1

VLAN200

 

VLAN200

2

 

 

 

 

 

 

2

 

 

 

 

 

 

3 VLAN300

 

 

Backbone

 

 

 

 

VLAN300 3

 

 

 

 

 

 

 

Catalyst 1200A

 

Catalyst 1200B

 

 

 

 

 

1/1

 

 

 

 

 

 

Router A

Wide area link

2/1 3/1

100BT ISL

ProStack

100BT ISL

VLAN400

VLAN600

VLAN400 VLAN500 VLAN400 VLAN500

Mainframe

S3902

Figure 10 illustrates the following scenarios:

Clients on VLAN 300 want to establish sessions with a server attached to a port in a different VLAN (600). In this scenario, packets originating on LAN interface 3 of the Catalyst 1200B switch are tagged with an 802.10 header with a security association identifier of 300 as they are forwarded onto the FDDI ring. Router A can accept these packets because it is configured to route VLAN 300, classify and make a layer 3 forwarding decision based on the destination network address and the route out (in this case Fast Ethernet 3/1), and adding the ISL VLAN header (color 200) appropriate to the destination subnet as the traffic is switched.

There is a network requirement to bridge two VLANs together through the system rather than selectively route certain protocols. In this scenario the two VLAN IDs are placed in the same bridge group. Note that they form a single broadcast domain and spanning tree, effectively forming a single VLAN.

See the “Routing between VLANs Configuration Example” section on page 70 for an example configuration of the topology shown in Figure 10.

To configure bridging between VLANs, enter the following commands, beginning in interface configuration mode:

 

Command

Purpose

Step 1

 

 

interface type

Specifies a subinterface.

 

slot/port.subinterface-number

 

Step 2

 

 

encapsulation {sde isl} domain

Specifies the encapsulation type (either ISL or SDE) and associates the

 

 

subinterface with the VLAN.

Step 3

 

 

bridge-group bridge-group

Enables bridged traffic between the subinterface and other interfaces in

 

 

the same bridge group.

 

 

 

Cisco IOS Bridging and IBM Networking Configuration Guide

BC-33

Image 11
Contents BC-23 Transparent and SRT BridgingBC-24 Transparent Bridging FeaturesIntegrated Routing and Bridging BC-25 Bridge-Group Virtual InterfaceBridge-Group Virtual Interface in the Router BC-26BC-27 SRT Bridging FeaturesOther Considerations BC-28 Transparent and SRT Bridging Configuration Task ListBC-29 Configuring Transparent Bridging and SRT BridgingAssigning Each Network Interface to a Bridge Group As Ieee 802.1D standard, DEC or Vlan bridgeBC-30 Command PurposeTransparently Bridged VLANs for ISL Choosing the OUI for Ethernet Type II FramesTransparently Bridged VLANs on an Fddi Backbone BC-31BC-32 Routing between ISL VLANsBC-33 Specifies a subinterfaceSubinterface with the Vlan Same bridge groupBC-34 Configuring a Subscriber Bridge GroupConfiguring Transparent Bridging over WANs Configuring Fast-Switched Transparent Bridging over ATMSpecifying the Bridging Protocol Configuring Transparent Bridging over DDRCommand Defining the Protocols to BridgeFast-Switched Transparent Bridging Configuring Transparent Bridging over Frame RelayDetermining Access for Bridging Configuring an Interface for BridgingBC-37 Configuring Transparent Bridging over Multiprotocol LapbBridging in a Frame Relay Network with No Multicasts Bridging in a Frame Relay Network with MulticastsBC-38 Configuring Transparent Bridging over SmdsConfiguring Transparent Bridging over Specifies IP-to-X.121 mappingBC-39 Configuring Concurrent Routing and BridgingConfiguring Integrated Routing and Bridging Specifies a protocol to be routed on a bridge groupBC-40 Configuring InterfacesConfiguring the Bridge-Group Virtual Interface Enabling Integrated Routing and BridgingBC-41 Configuring Protocols for Routing or BridgingBC-42 Configuring Transparent Bridging OptionsDisabling IP Routing BC-43 Configuring LAT CompressionEnabling Autonomous Bridging BC-44 Establishing Multiple Spanning-Tree DomainsEstablishes a multiple spanning-tree domain BC-45 Configuring Bridge Table Aging TimeFiltering Transparently Bridged Packets Forwarding Multicast AddressesBC-46 Setting Filters at the MAC LayerBC-47 Filters particular MAC-layer station addressesFiltering by Vendor Code Ethernet-ordered MAC addressBC-48 Filtering by Protocol TypeType BC-49 Defining and Applying Extended Access ListsConfiguration mode InterfaceBC-50 BC-51 Filtering LAT Service AnnouncementsEnabling LAT Group Code Service Filtering BC-52 Adjusting Spanning-Tree ParametersAssigning Path Costs Setting the Bridge PrioritySetting an Interface Priority Adjusting Bpdu IntervalsDefining the Maximum Idle Interval Adjusting the Interval between Hello BPDUsDefining the Forward Delay Interval Disabling the Spanning Tree on an InterfaceBC-55 BC-56 Configuring the PA-12E/2FE Port AdapterBC-57 Monitoring and Maintaining the PA-12E/2FE Port AdapterBC-58 BC-59 BC-60 Configuring Circuit GroupsBC-61 Configuring Constrained Multicast FloodingConfigures a transmission pause interval Distributes base load on the source MAC address onlyBC-62 BC-63 Basic Bridging ExampleBC-64 Concurrent Routing and Bridging ExampleBC-65 Basic Integrated Routing and Bridging ExampleBC-66 Complex Integrated Routing and Bridging ExampleBC-67 Transparently Bridged VLANs Configuration ExampleBC-68 Router OneRouter Two BC-69 Router ThreeBC-70 Routing between VLANs Configuration ExampleEthernet-to-FDDI Transparent Bridging Example BC-71 Ethernet Bridging ExampleRouter/Bridge in Building BC-72 SRT Bridging ExampleBC-73 Configuration for the New York City RouterConfiguration for the Thule, Greenland Router Multicast or Broadcast Packets Bridging ExampleBC-74 Configuration for BridgeTransparent Bridging Example BC-75 Frame Relay Transparent Bridging ExamplesBridging in a Frame Relay Network with No Multicasts BC-76 Transparent Bridging over Multiprotocol Lapb ExampleBridging in a Frame Relay Network with Multicasts BC-77 Transparent Bridging over DDR ExamplesBC-78 Fast-Switched Transparent Bridging over Smds ExampleComplex Transparent Bridging Network Topology Example Bridged Subnetworks with Domains BC-79BC-80 Configuration for Router aBC-81 Configuration for Router BConfiguration for Router C Configuration for Router DBC-82 Fast Ethernet Subscriber Port, Frame Relay Trunk ExampleATM Subscriber Ports, ATM Trunk Example BC-83 BC-84 Configuration of IRB for PA-12E/2FE Port Adapter Example

BC-23 specifications

Cisco Systems has long been a leader in the networking industry, and its BC-23 model exemplifies the company's commitment to innovation and performance. Aimed at enhancing business operations, the BC-23 is tailored for organizations looking for robust solutions that support their digital transformation efforts.

One of the standout features of the Cisco BC-23 is its advanced networking capabilities. It supports high-speed data transmission, enabling seamless communication across networks. With multi-gigabit Ethernet ports, the BC-23 facilitates faster data rates, accommodating the increasing bandwidth demands of modern applications. This feature is particularly beneficial for businesses that rely heavily on cloud services, video conferencing, and data-heavy applications.

Security is a top priority, and the Cisco BC-23 incorporates cutting-edge security measures. Integrated threat detection and prevention systems help safeguard sensitive data from cyber threats. Additionally, the device supports secure access protocols, ensuring that only authorized users can connect to the network. This multi-layered security approach not only protects the network infrastructure but also secures the integrity of the data being transmitted.

Another significant characteristic of the BC-23 is its support for software-defined networking (SDN). This technology allows businesses to manage their networks through centralized software applications, facilitating real-time adjustments and optimizations. The flexibility afforded by SDN is especially advantageous in dynamic environments where network demands can shift rapidly.

The Cisco BC-23 also offers enhanced management features, allowing IT teams to monitor network performance and analytics effectively. This visibility into network operations enables organizations to identify potential issues before they escalate, minimizing downtime and keeping business processes smooth.

Furthermore, the BC-23 is designed for scalability. As organizations grow, their networking needs evolve, and the BC-23 can easily adapt to these changes. Businesses can add additional devices and capabilities without the need for a complete overhaul of their existing infrastructure.

With its combination of speed, security, and scalability, the Cisco Systems BC-23 is an invaluable asset for modern businesses. It stands out not just as a networking device but as a comprehensive solution that meets the demands of today's fast-paced, technology-driven environment. As companies continue to leverage digital tools for growth and efficiency, the BC-23 will undoubtedly play a significant role in their success.