Cisco Systems BC-23 Defining and Applying Extended Access Lists, Configuration mode, Interface

Page 27

Configuring Transparent Bridging

Transparent and SRT Bridging Configuration Task List

To filter these packets on input or output, use either or both of the following commands in interface configuration mode:

Command

Purpose

 

 

bridge-group bridge-groupinput-type-list

Adds a filter for Ethernet- and SNAP-encapsulated packets on input.

access-list-number

 

 

 

bridge-group bridge-groupoutput-type-list

Adds a filter for Ethernet- and SNAP-encapsulated packets on output.

access-list-number

 

 

 

You can filter IEEE 802-encapsulated packets on input. The access list you create is applied to all IEEE 802 frames received on that interface prior to the bridge-learning process. SNAP frames also must pass any applicable Ethernet type-code access list.

You can also filter IEEE 802-encapsulated packets on output. SNAP frames also must pass any applicable Ethernet type-code access list. The access list you create is applied just before sending out a frame to an interface.

To filter these packets on input or output, use one or both of the following commands in interface configuration mode:

Command

Purpose

 

 

bridge-group bridge-groupinput-lsap-list

Adds a filter for IEEE 802-encapsulated packets on input.

access-list-number

 

 

 

bridge-group bridge-groupoutput-lsap-list

Adds a filter for IEEE 802-encapsulated packets on output.

access-list-number

 

 

 

Access lists for Ethernet- and IEEE 802-encapsulated packets affect only bridging functions. You cannot use such access lists to block frames with protocols that are being routed.

Defining and Applying Extended Access Lists

If you are filtering by the MAC-layer address, whether it is by a specific MAC address, vendor code, or protocol type, you can define and apply extended access lists. Extended access lists allow finer granularity of control. They allow you to specify both source and destination addresses and arbitrary bytes in the packet.

To define an extended access list, use the following command in global configuration mode:

Command

Purpose

 

 

 

 

access-list access-list-number{permit

Defines an extended access list for finer control of bridged traffic.

deny} source source-mask destination

 

 

destination-mask offset size operator operand

 

 

 

 

 

To apply an extended access list to an interface, use one or both of the following commands in interface

configuration mode:

 

 

 

 

 

Command

Purpose

 

 

 

bridge-group bridge-groupinput-pattern-list

Applies an extended access list to the packets being received by an

access-list-number

interface.

 

 

 

bridge-group bridge-groupoutput-pattern-list

Applies an extended access list to the packet being sent by an

access-list-number

interface.

 

 

 

Cisco IOS Bridging and IBM Networking Configuration Guide

BC-49

Image 27
Contents BC-23 Transparent and SRT BridgingTransparent Bridging Features Integrated Routing and BridgingBC-24 BC-25 Bridge-Group Virtual InterfaceBridge-Group Virtual Interface in the Router BC-26SRT Bridging Features Other ConsiderationsBC-27 BC-28 Transparent and SRT Bridging Configuration Task ListBC-29 Configuring Transparent Bridging and SRT BridgingAssigning Each Network Interface to a Bridge Group As Ieee 802.1D standard, DEC or Vlan bridgeBC-30 Command PurposeTransparently Bridged VLANs for ISL Choosing the OUI for Ethernet Type II FramesTransparently Bridged VLANs on an Fddi Backbone BC-31BC-32 Routing between ISL VLANsBC-33 Specifies a subinterfaceSubinterface with the Vlan Same bridge groupBC-34 Configuring a Subscriber Bridge GroupConfiguring Transparent Bridging over WANs Configuring Fast-Switched Transparent Bridging over ATMSpecifying the Bridging Protocol Configuring Transparent Bridging over DDRCommand Defining the Protocols to BridgeFast-Switched Transparent Bridging Configuring Transparent Bridging over Frame RelayDetermining Access for Bridging Configuring an Interface for BridgingBC-37 Configuring Transparent Bridging over Multiprotocol LapbBridging in a Frame Relay Network with No Multicasts Bridging in a Frame Relay Network with MulticastsBC-38 Configuring Transparent Bridging over SmdsConfiguring Transparent Bridging over Specifies IP-to-X.121 mappingBC-39 Configuring Concurrent Routing and BridgingConfiguring Integrated Routing and Bridging Specifies a protocol to be routed on a bridge groupBC-40 Configuring InterfacesConfiguring the Bridge-Group Virtual Interface Enabling Integrated Routing and BridgingBC-41 Configuring Protocols for Routing or BridgingConfiguring Transparent Bridging Options Disabling IP RoutingBC-42 Configuring LAT Compression Enabling Autonomous BridgingBC-43 Establishing Multiple Spanning-Tree Domains Establishes a multiple spanning-tree domainBC-44 BC-45 Configuring Bridge Table Aging TimeFiltering Transparently Bridged Packets Forwarding Multicast AddressesBC-46 Setting Filters at the MAC LayerBC-47 Filters particular MAC-layer station addressesFiltering by Vendor Code Ethernet-ordered MAC addressFiltering by Protocol Type TypeBC-48 BC-49 Defining and Applying Extended Access ListsConfiguration mode InterfaceBC-50 Filtering LAT Service Announcements Enabling LAT Group Code Service FilteringBC-51 BC-52 Adjusting Spanning-Tree ParametersAssigning Path Costs Setting the Bridge PrioritySetting an Interface Priority Adjusting Bpdu IntervalsDefining the Maximum Idle Interval Adjusting the Interval between Hello BPDUsDefining the Forward Delay Interval Disabling the Spanning Tree on an InterfaceBC-55 BC-56 Configuring the PA-12E/2FE Port AdapterBC-57 Monitoring and Maintaining the PA-12E/2FE Port AdapterBC-58 BC-59 BC-60 Configuring Circuit GroupsBC-61 Configuring Constrained Multicast FloodingConfigures a transmission pause interval Distributes base load on the source MAC address onlyBC-62 BC-63 Basic Bridging ExampleBC-64 Concurrent Routing and Bridging ExampleBC-65 Basic Integrated Routing and Bridging ExampleBC-66 Complex Integrated Routing and Bridging ExampleBC-67 Transparently Bridged VLANs Configuration ExampleRouter One Router TwoBC-68 BC-69 Router ThreeRouting between VLANs Configuration Example Ethernet-to-FDDI Transparent Bridging ExampleBC-70 Ethernet Bridging Example Router/Bridge in BuildingBC-71 BC-72 SRT Bridging ExampleBC-73 Configuration for the New York City RouterConfiguration for the Thule, Greenland Router Multicast or Broadcast Packets Bridging ExampleConfiguration for Bridge Transparent Bridging ExampleBC-74 Frame Relay Transparent Bridging Examples Bridging in a Frame Relay Network with No MulticastsBC-75 Transparent Bridging over Multiprotocol Lapb Example Bridging in a Frame Relay Network with MulticastsBC-76 BC-77 Transparent Bridging over DDR ExamplesFast-Switched Transparent Bridging over Smds Example Complex Transparent Bridging Network Topology ExampleBC-78 Bridged Subnetworks with Domains BC-79BC-80 Configuration for Router aBC-81 Configuration for Router BConfiguration for Router C Configuration for Router DFast Ethernet Subscriber Port, Frame Relay Trunk Example ATM Subscriber Ports, ATM Trunk ExampleBC-82 BC-83 BC-84 Configuration of IRB for PA-12E/2FE Port Adapter Example

BC-23 specifications

Cisco Systems has long been a leader in the networking industry, and its BC-23 model exemplifies the company's commitment to innovation and performance. Aimed at enhancing business operations, the BC-23 is tailored for organizations looking for robust solutions that support their digital transformation efforts.

One of the standout features of the Cisco BC-23 is its advanced networking capabilities. It supports high-speed data transmission, enabling seamless communication across networks. With multi-gigabit Ethernet ports, the BC-23 facilitates faster data rates, accommodating the increasing bandwidth demands of modern applications. This feature is particularly beneficial for businesses that rely heavily on cloud services, video conferencing, and data-heavy applications.

Security is a top priority, and the Cisco BC-23 incorporates cutting-edge security measures. Integrated threat detection and prevention systems help safeguard sensitive data from cyber threats. Additionally, the device supports secure access protocols, ensuring that only authorized users can connect to the network. This multi-layered security approach not only protects the network infrastructure but also secures the integrity of the data being transmitted.

Another significant characteristic of the BC-23 is its support for software-defined networking (SDN). This technology allows businesses to manage their networks through centralized software applications, facilitating real-time adjustments and optimizations. The flexibility afforded by SDN is especially advantageous in dynamic environments where network demands can shift rapidly.

The Cisco BC-23 also offers enhanced management features, allowing IT teams to monitor network performance and analytics effectively. This visibility into network operations enables organizations to identify potential issues before they escalate, minimizing downtime and keeping business processes smooth.

Furthermore, the BC-23 is designed for scalability. As organizations grow, their networking needs evolve, and the BC-23 can easily adapt to these changes. Businesses can add additional devices and capabilities without the need for a complete overhaul of their existing infrastructure.

With its combination of speed, security, and scalability, the Cisco Systems BC-23 is an invaluable asset for modern businesses. It stands out not just as a networking device but as a comprehensive solution that meets the demands of today's fast-paced, technology-driven environment. As companies continue to leverage digital tools for growth and efficiency, the BC-23 will undoubtedly play a significant role in their success.