Cisco Systems BC-23 manual SRT Bridging Features, Other Considerations, BC-27

Page 5

Configuring Transparent Bridging

Technology Overview

FDDI-bridged interface. But for Internet Packet Exchange (IPX), Novell-ether encapsulation from the bridge-group virtual interface is translated to raw-token or raw-FDDI when bridging IPX to a Token Ring- or FDDI-bridged interface. Because this behavior is usually not what you want, you must configure IPX SNAP or Service Advertisement Protocol (SAP) encapsulation on the bridge-group virtual interface.

Other Considerations

The following are additional facts regarding the support of integrated routing and bridging:

Integrated routing and bridging is not supported on cBus platforms (AGS+ and Cisco 7000 series).

Integrated routing and bridging is supported for transparent bridging, but not for source-route bridging (SRB).

Integrated routing and bridging is supported on all media interfaces except X.25 and Integrated Services Digital Network (ISDN) bridged interfaces.

Integrated routing and bridging supports three protocols: IP, IPX, and AppleTalk in both fast-switching and process-switching modes.

Integrated routing and bridging and concurrent routing and bridging cannot operate at the same time.

With integrated routing and bridging configured, associate Layer-3 attributes only on the bridge-group virtual interface and not on the bridging interfaces. Having IP addresses both on the bridge-group virtual interface and on the bridging interfaces is known to produce inconsistent behavior.

SRT Bridging Features

Cisco routers support transparent bridging on Token Ring interfaces that support SRT bridging. Both transparent and SRT bridging are supported on all Token Ring interface cards that can be configured for either 4- or 16-MB transmission speeds.

As with other media, all the features that use bridge-groupcommands can be used on Token Ring interfaces. As with other interface types, the bridge group can be configured to run either the IEEE or DEC Spanning-Tree Protocols. When configured for the IEEE Spanning-Tree Protocol, the bridge cooperates with other SRT bridges and constructs a loop-free topology across the entire extended LAN.

You can also run the DEC Spanning-Tree Protocol over Token Ring. Use it when you have other non-IEEE bridges on other media and you do not have any SRT bridges on Token Ring. In this configuration, all the Token Ring transparent bridges must be Cisco routers. This is because the DEC Spanning-Tree Protocol has not been standardized on Token Ring.

As specified by the SRT bridging specification, only packets without a routing information field (RIF) (RII = 0 in the SA field) are transparently bridged. Packets with a RIF (RII = 1) are passed to the SRB module for handling. An SRT-capable Token Ring interface can have both SRB and transparent bridging enabled at the same time. However, with SRT bridging, frames that did not have a RIF when they were produced by their generating host never gain a RIF, and frames that did have a RIF when they were produced never lose that RIF.

Note Because bridges running only SRT bridging never add or remove RIFs from frames, they do not integrate SRB with transparent bridging. A host connected to a source-route bridge that expects RIFs can never communicate with a device across a bridge that does not understand RIFs. SRT bridging cannot tie in existing source-route bridges to a transparent

Cisco IOS Bridging and IBM Networking Configuration Guide

BC-27

Image 5
Contents BC-23 Transparent and SRT BridgingBC-24 Transparent Bridging FeaturesIntegrated Routing and Bridging BC-25 Bridge-Group Virtual InterfaceBridge-Group Virtual Interface in the Router BC-26BC-27 SRT Bridging FeaturesOther Considerations BC-28 Transparent and SRT Bridging Configuration Task ListAssigning Each Network Interface to a Bridge Group Configuring Transparent Bridging and SRT BridgingAs Ieee 802.1D standard, DEC or Vlan bridge BC-29Transparently Bridged VLANs for ISL Command PurposeChoosing the OUI for Ethernet Type II Frames BC-30Transparently Bridged VLANs on an Fddi Backbone BC-31BC-32 Routing between ISL VLANsSubinterface with the Vlan Specifies a subinterfaceSame bridge group BC-33Configuring Transparent Bridging over WANs Configuring a Subscriber Bridge GroupConfiguring Fast-Switched Transparent Bridging over ATM BC-34Command Configuring Transparent Bridging over DDRDefining the Protocols to Bridge Specifying the Bridging ProtocolDetermining Access for Bridging Configuring Transparent Bridging over Frame RelayConfiguring an Interface for Bridging Fast-Switched Transparent BridgingBridging in a Frame Relay Network with No Multicasts Configuring Transparent Bridging over Multiprotocol LapbBridging in a Frame Relay Network with Multicasts BC-37Configuring Transparent Bridging over Configuring Transparent Bridging over SmdsSpecifies IP-to-X.121 mapping BC-38Configuring Integrated Routing and Bridging Configuring Concurrent Routing and BridgingSpecifies a protocol to be routed on a bridge group BC-39Configuring the Bridge-Group Virtual Interface Configuring InterfacesEnabling Integrated Routing and Bridging BC-40BC-41 Configuring Protocols for Routing or BridgingBC-42 Configuring Transparent Bridging OptionsDisabling IP Routing BC-43 Configuring LAT CompressionEnabling Autonomous Bridging BC-44 Establishing Multiple Spanning-Tree DomainsEstablishes a multiple spanning-tree domain Filtering Transparently Bridged Packets Configuring Bridge Table Aging TimeForwarding Multicast Addresses BC-45BC-46 Setting Filters at the MAC LayerFiltering by Vendor Code Filters particular MAC-layer station addressesEthernet-ordered MAC address BC-47BC-48 Filtering by Protocol TypeType Configuration mode Defining and Applying Extended Access ListsInterface BC-49BC-50 BC-51 Filtering LAT Service AnnouncementsEnabling LAT Group Code Service Filtering BC-52 Adjusting Spanning-Tree ParametersSetting an Interface Priority Setting the Bridge PriorityAdjusting Bpdu Intervals Assigning Path CostsDefining the Forward Delay Interval Adjusting the Interval between Hello BPDUsDisabling the Spanning Tree on an Interface Defining the Maximum Idle IntervalBC-55 BC-56 Configuring the PA-12E/2FE Port AdapterBC-57 Monitoring and Maintaining the PA-12E/2FE Port AdapterBC-58 BC-59 BC-60 Configuring Circuit GroupsConfigures a transmission pause interval Configuring Constrained Multicast FloodingDistributes base load on the source MAC address only BC-61BC-62 BC-63 Basic Bridging ExampleBC-64 Concurrent Routing and Bridging ExampleBC-65 Basic Integrated Routing and Bridging ExampleBC-66 Complex Integrated Routing and Bridging ExampleBC-67 Transparently Bridged VLANs Configuration ExampleBC-68 Router OneRouter Two BC-69 Router ThreeBC-70 Routing between VLANs Configuration ExampleEthernet-to-FDDI Transparent Bridging Example BC-71 Ethernet Bridging ExampleRouter/Bridge in Building BC-72 SRT Bridging ExampleConfiguration for the Thule, Greenland Router Configuration for the New York City RouterMulticast or Broadcast Packets Bridging Example BC-73BC-74 Configuration for BridgeTransparent Bridging Example BC-75 Frame Relay Transparent Bridging ExamplesBridging in a Frame Relay Network with No Multicasts BC-76 Transparent Bridging over Multiprotocol Lapb ExampleBridging in a Frame Relay Network with Multicasts BC-77 Transparent Bridging over DDR ExamplesBC-78 Fast-Switched Transparent Bridging over Smds ExampleComplex Transparent Bridging Network Topology Example Bridged Subnetworks with Domains BC-79BC-80 Configuration for Router aConfiguration for Router C Configuration for Router BConfiguration for Router D BC-81BC-82 Fast Ethernet Subscriber Port, Frame Relay Trunk ExampleATM Subscriber Ports, ATM Trunk Example BC-83 BC-84 Configuration of IRB for PA-12E/2FE Port Adapter Example

BC-23 specifications

Cisco Systems has long been a leader in the networking industry, and its BC-23 model exemplifies the company's commitment to innovation and performance. Aimed at enhancing business operations, the BC-23 is tailored for organizations looking for robust solutions that support their digital transformation efforts.

One of the standout features of the Cisco BC-23 is its advanced networking capabilities. It supports high-speed data transmission, enabling seamless communication across networks. With multi-gigabit Ethernet ports, the BC-23 facilitates faster data rates, accommodating the increasing bandwidth demands of modern applications. This feature is particularly beneficial for businesses that rely heavily on cloud services, video conferencing, and data-heavy applications.

Security is a top priority, and the Cisco BC-23 incorporates cutting-edge security measures. Integrated threat detection and prevention systems help safeguard sensitive data from cyber threats. Additionally, the device supports secure access protocols, ensuring that only authorized users can connect to the network. This multi-layered security approach not only protects the network infrastructure but also secures the integrity of the data being transmitted.

Another significant characteristic of the BC-23 is its support for software-defined networking (SDN). This technology allows businesses to manage their networks through centralized software applications, facilitating real-time adjustments and optimizations. The flexibility afforded by SDN is especially advantageous in dynamic environments where network demands can shift rapidly.

The Cisco BC-23 also offers enhanced management features, allowing IT teams to monitor network performance and analytics effectively. This visibility into network operations enables organizations to identify potential issues before they escalate, minimizing downtime and keeping business processes smooth.

Furthermore, the BC-23 is designed for scalability. As organizations grow, their networking needs evolve, and the BC-23 can easily adapt to these changes. Businesses can add additional devices and capabilities without the need for a complete overhaul of their existing infrastructure.

With its combination of speed, security, and scalability, the Cisco Systems BC-23 is an invaluable asset for modern businesses. It stands out not just as a networking device but as a comprehensive solution that meets the demands of today's fast-paced, technology-driven environment. As companies continue to leverage digital tools for growth and efficiency, the BC-23 will undoubtedly play a significant role in their success.