Cisco Systems BC-23 manual Frame Relay Transparent Bridging Examples, BC-75

Page 53

Configuring Transparent Bridging

Transparent and SRT Bridging Configuration Examples

Configuration for Bridge 3

interface serial 0 encapsulation x25

x25 address 31370019565 bridge-group 5

x25 map bridge 31370019027 broadcast

x25 map bridge 31370019134 broadcast

!

bridge 5 protocol ieee

Frame Relay Transparent Bridging Examples

Figure 20 illustrates three bridges connected to each other through a Frame Relay network.

Figure 20 Frame Relay Bridging Example

 

Public

 

Bridge 2

Frame Relay

Bridge 1

network

 

 

 

Bridge 3

 

S1093a

Bridging in a Frame Relay Network with No Multicasts

The Frame Relay bridging software uses the same spanning-tree algorithm as the other bridging functions, but allows packets to be encapsulated for transmission across a Frame Relay network. The command specifies IP-to-DLCI address mapping and maintains a table of both the Ethernet and DLCIs. Following are the configuration commands for each of the bridges in a network that does not support a multicast facility:

Configuration for Bridge 1

interface ethernet 2 bridge-group 5

ip address 128.88.11.9 255.255.255.0

!

interface serial 0 encapsulation frame-relay bridge-group 5

frame-relay map bridge 134 broadcast frame-relay map bridge 565 broadcast

!

bridge 5 protocol ieee

Configuration for Bridge 2

interface serial 1 encapsulation frame-relay bridge-group 5

frame-relay map bridge 27 broadcast frame-relay map bridge 565 broadcast

!

bridge 5 protocol ieee

Cisco IOS Bridging and IBM Networking Configuration Guide

BC-75

Image 53
Contents BC-23 Transparent and SRT BridgingBC-24 Transparent Bridging FeaturesIntegrated Routing and Bridging BC-25 Bridge-Group Virtual InterfaceBridge-Group Virtual Interface in the Router BC-26BC-27 SRT Bridging FeaturesOther Considerations BC-28 Transparent and SRT Bridging Configuration Task ListAssigning Each Network Interface to a Bridge Group Configuring Transparent Bridging and SRT BridgingAs Ieee 802.1D standard, DEC or Vlan bridge BC-29Transparently Bridged VLANs for ISL Command PurposeChoosing the OUI for Ethernet Type II Frames BC-30Transparently Bridged VLANs on an Fddi Backbone BC-31BC-32 Routing between ISL VLANsSubinterface with the Vlan Specifies a subinterfaceSame bridge group BC-33Configuring Transparent Bridging over WANs Configuring a Subscriber Bridge GroupConfiguring Fast-Switched Transparent Bridging over ATM BC-34Command Configuring Transparent Bridging over DDRDefining the Protocols to Bridge Specifying the Bridging ProtocolDetermining Access for Bridging Configuring Transparent Bridging over Frame RelayConfiguring an Interface for Bridging Fast-Switched Transparent BridgingBridging in a Frame Relay Network with No Multicasts Configuring Transparent Bridging over Multiprotocol LapbBridging in a Frame Relay Network with Multicasts BC-37Configuring Transparent Bridging over Configuring Transparent Bridging over SmdsSpecifies IP-to-X.121 mapping BC-38Configuring Integrated Routing and Bridging Configuring Concurrent Routing and BridgingSpecifies a protocol to be routed on a bridge group BC-39Configuring the Bridge-Group Virtual Interface Configuring InterfacesEnabling Integrated Routing and Bridging BC-40BC-41 Configuring Protocols for Routing or BridgingBC-42 Configuring Transparent Bridging OptionsDisabling IP Routing BC-43 Configuring LAT CompressionEnabling Autonomous Bridging BC-44 Establishing Multiple Spanning-Tree DomainsEstablishes a multiple spanning-tree domain Filtering Transparently Bridged Packets Configuring Bridge Table Aging TimeForwarding Multicast Addresses BC-45BC-46 Setting Filters at the MAC LayerFiltering by Vendor Code Filters particular MAC-layer station addressesEthernet-ordered MAC address BC-47BC-48 Filtering by Protocol TypeType Configuration mode Defining and Applying Extended Access ListsInterface BC-49BC-50 BC-51 Filtering LAT Service AnnouncementsEnabling LAT Group Code Service Filtering BC-52 Adjusting Spanning-Tree ParametersSetting an Interface Priority Setting the Bridge PriorityAdjusting Bpdu Intervals Assigning Path CostsDefining the Forward Delay Interval Adjusting the Interval between Hello BPDUsDisabling the Spanning Tree on an Interface Defining the Maximum Idle IntervalBC-55 BC-56 Configuring the PA-12E/2FE Port AdapterBC-57 Monitoring and Maintaining the PA-12E/2FE Port AdapterBC-58 BC-59 BC-60 Configuring Circuit GroupsConfigures a transmission pause interval Configuring Constrained Multicast FloodingDistributes base load on the source MAC address only BC-61BC-62 BC-63 Basic Bridging ExampleBC-64 Concurrent Routing and Bridging ExampleBC-65 Basic Integrated Routing and Bridging ExampleBC-66 Complex Integrated Routing and Bridging ExampleBC-67 Transparently Bridged VLANs Configuration ExampleBC-68 Router OneRouter Two BC-69 Router ThreeBC-70 Routing between VLANs Configuration ExampleEthernet-to-FDDI Transparent Bridging Example BC-71 Ethernet Bridging ExampleRouter/Bridge in Building BC-72 SRT Bridging ExampleConfiguration for the Thule, Greenland Router Configuration for the New York City RouterMulticast or Broadcast Packets Bridging Example BC-73BC-74 Configuration for BridgeTransparent Bridging Example BC-75 Frame Relay Transparent Bridging ExamplesBridging in a Frame Relay Network with No Multicasts BC-76 Transparent Bridging over Multiprotocol Lapb ExampleBridging in a Frame Relay Network with Multicasts BC-77 Transparent Bridging over DDR ExamplesBC-78 Fast-Switched Transparent Bridging over Smds ExampleComplex Transparent Bridging Network Topology Example Bridged Subnetworks with Domains BC-79BC-80 Configuration for Router aConfiguration for Router C Configuration for Router BConfiguration for Router D BC-81BC-82 Fast Ethernet Subscriber Port, Frame Relay Trunk ExampleATM Subscriber Ports, ATM Trunk Example BC-83 BC-84 Configuration of IRB for PA-12E/2FE Port Adapter Example

BC-23 specifications

Cisco Systems has long been a leader in the networking industry, and its BC-23 model exemplifies the company's commitment to innovation and performance. Aimed at enhancing business operations, the BC-23 is tailored for organizations looking for robust solutions that support their digital transformation efforts.

One of the standout features of the Cisco BC-23 is its advanced networking capabilities. It supports high-speed data transmission, enabling seamless communication across networks. With multi-gigabit Ethernet ports, the BC-23 facilitates faster data rates, accommodating the increasing bandwidth demands of modern applications. This feature is particularly beneficial for businesses that rely heavily on cloud services, video conferencing, and data-heavy applications.

Security is a top priority, and the Cisco BC-23 incorporates cutting-edge security measures. Integrated threat detection and prevention systems help safeguard sensitive data from cyber threats. Additionally, the device supports secure access protocols, ensuring that only authorized users can connect to the network. This multi-layered security approach not only protects the network infrastructure but also secures the integrity of the data being transmitted.

Another significant characteristic of the BC-23 is its support for software-defined networking (SDN). This technology allows businesses to manage their networks through centralized software applications, facilitating real-time adjustments and optimizations. The flexibility afforded by SDN is especially advantageous in dynamic environments where network demands can shift rapidly.

The Cisco BC-23 also offers enhanced management features, allowing IT teams to monitor network performance and analytics effectively. This visibility into network operations enables organizations to identify potential issues before they escalate, minimizing downtime and keeping business processes smooth.

Furthermore, the BC-23 is designed for scalability. As organizations grow, their networking needs evolve, and the BC-23 can easily adapt to these changes. Businesses can add additional devices and capabilities without the need for a complete overhaul of their existing infrastructure.

With its combination of speed, security, and scalability, the Cisco Systems BC-23 is an invaluable asset for modern businesses. It stands out not just as a networking device but as a comprehensive solution that meets the demands of today's fast-paced, technology-driven environment. As companies continue to leverage digital tools for growth and efficiency, the BC-23 will undoubtedly play a significant role in their success.