SNMP OverviewUsing SNMP

No.

Trap Name

Objects

Family

Description

 

 

 

 

 

24

risingAlarm

alarmIndex

rmon

An Ethernet statistical variable

 

 

alarmVariable

 

has exceeded its rising thresh-

 

 

alarmSample-

 

old. The variable’s rising thresh-

 

 

Type

 

old and whether it will issue an

 

 

alarmValue

 

SNMP trap for this condition are

 

 

alarmRisingTh-

 

configured by an NMS station

 

 

reshold

 

running RMON.

alarmIndex—An index that uniquely identifies an entry in the alarm table. Each such entry defines a diagnos- tic sample at a particular interval for an object on the device.

alarmVariable—The object identifier of the particular variable to be sampled. Only variables that resolve to an ASN.1 primitive type of INTEGER (INTEGER, Integer32, Counter32, Counter64, Gauge, or TimeTicks) may be sampled.

alarmSampleType—The method of sampling the selected variable and calculating the value to be compared against the thresholds. If the value of this object is absoluteValue(1), the value of the selected variable will be compared directly with the thresholds at the end of the sampling interval. If the value of this object is deltaValue(2), the value of the selected variable at the last sample will be subtracted from the current value, and the difference compared with the thresholds.

alarmValue—The value of the statistic during the last sampling period. For example, if the sample type is deltaValue, this value will be the difference between the samples at the beginning and end of the period. If the sample type is absoluteValue, this value will be the sampled value at the end of the period. alarmRisingThreshold—A threshold for the sampled statistic. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval was less than this threshold, a single event will be generated. A single event will also be generated if the first sample after this entry becomes valid is greater than or equal to this threshold and the associated alarmStartupAlarm is equal to risingAlarm(1) or risin- gOrFallingAlarm(3).

25 fallingAlarm

alarmIndex

rmon

An Ethernet statistical variable

 

alarmVariable

 

has dipped below its falling

 

alarmSample-

 

threshold. The variable’s falling

 

Type

 

threshold and whether it will

 

alarmValue

 

issue an SNMP trap for this con-

 

alarmFallingTh-

 

dition are configured by an NMS

 

reshold

 

station running RMON.

alarmIndex—An index that uniquely identifies an entry in the alarm table. Each such entry defines a diagnos- tic sample at a particular interval for an object on the device.

alarmVariable—The object identifier of the particular variable to be sampled. Only variables that resolve to an ASN.1 primitive type of INTEGER (INTEGER, Integer32, Counter32, Counter64, Gauge, or TimeTicks) may be sampled.

alarmSampleType—The method of sampling the selected variable and calculating the value to be compared against the thresholds. If the value of this object is absoluteValue(1), the value of the selected variable will be compared directly with the thresholds at the end of the sampling interval. If the value of this object is deltaValue(2), the value of the selected variable at the last sample will be subtracted from the current value, and the difference compared with the thresholds.

alarmValue—The value of the statistic during the last sampling period. For example, if the sample type is deltaValue, this value will be the difference between the samples at the beginning and end of the period. If the sample type is absoluteValue, this value will be the sampled value at the end of the period. alarmFallingThreshold—A threshold for the sampled statistic. When the current sampled value is less than or equal to this threshold, and the value at the last sampling interval was greater than this threshold, a single event will be generated. A single event will also be generated if the first sample after this entry becomes valid is less than or equal to this threshold and the associated alarmStartupAlarm is equal to fallingAlarm(2) or risingOrFall- ingAlarm(3).

26 stpNewRoot

vStpNumber

stp

Sent by a bridge that became the

 

 

 

new root of the spanning tree.

vStpNumber—The Spanning Tree number identifying this instance.

page 10-16

OmniSwitch 6600 Family Switch Management Guide March 2005

Page 220
Image 220
Alcatel Carrier Internetworking Solutions omniswitch manual Trap Name Objects Family Description

omniswitch specifications

Alcatel Carrier Internetworking Solutions offers the OmniSwitch series, renowned for its robust capabilities in delivering high-performance networking solutions tailored for a variety of enterprise and service provider environments. The OmniSwitch series is particularly recognized for its scalability, flexibility, and the depth of its feature set, making it a popular choice for organizations that demand reliable and efficient networking solutions.

One of the standout features of the OmniSwitch series is its advanced Layer 2 and Layer 3 switching capabilities, providing organizations with essential support for IP routing and robust Ethernet networking. This versatility ensures that the switch can seamlessly integrate into existing network architectures, facilitating smooth upgrade paths in response to evolving business needs. The OmniSwitch includes support for multiple protocols like RIP, OSPF, and BGP, making it suitable for complex networking topologies.

In terms of performance, OmniSwitch devices are engineered to handle high bandwidth demands. With features such as hardware-based forwarding, they ensure low latency and minimal packet loss, which are critical for applications sensitive to delays such as VoIP and video conferencing. Furthermore, they support Power over Ethernet (PoE), allowing users to power devices like IP phones and security cameras directly through the network.

Security is another key characteristic of the OmniSwitch series. It includes advanced security features such as robust access control lists (ACLs), port security, and built-in support for IEEE 802.1X authentication. These features collectively enhance the security posture of the network, protecting sensitive data and ensuring that only authorized devices can access the network resources.

The OmniSwitch is also designed with redundancy and reliability in mind. Features like Rapid Spanning Tree Protocol (RSTP) and Virtual Router Redundancy Protocol (VRRP) ensure that network uptime is maximized and that failover is swift in the event of a hardware failure. This makes it a viable option for organizations that cannot afford downtime.

In addition to these features, Alcatel's OmniSwitch series comes equipped with a user-friendly management interface. This interface simplifies the setup, configuration, and monitoring of the network, making it accessible even to those with limited networking expertise. Through intuitive dashboards and support for SNMP, administrators can manage their networks effectively.

In conclusion, Alcatel Carrier Internetworking Solutions' OmniSwitch series offers a comprehensive suite of features tailored to meet the needs of modern networks. With its blend of performance, scalability, security, and ease of management, the OmniSwitch stands out as a preferred choice for businesses seeking to enhance their networking infrastructure.