NTP Overview

Configuring Network Time Protocol (NTP)

 

 

 

 

NTP Overview

The Network Time Protocol (NTP) is used to synchronize the time of a computer client or server to another server or reference time source, such as a radio or satellite receiver. It provides client time accura- cies within a millisecond on LANs, and up to a few tens of milliseconds on WANs relative to a primary server synchronized to Universal Coordinated Time (UTC) (via a Global Positioning Service receiver, for example). Typical NTP configurations utilize multiple redundant servers and diverse network paths in order to achieve high accuracy and reliability. Some configurations include cryptographic authentication to prevent accidental or malicious protocol attacks.

It is important for networks to maintain accurate time synchronization between network nodes. The stan- dard timescale used by most nations of the world is based on a combination of UTC (representing the Earth’s rotation about its axis), and the Gregorian Calendar (representing the Earth’s rotation about the Sun). The UTC timescale is disciplined with respect to International Atomic Time (TAI) by inserting leap seconds at intervals of about 18 months. UTC time is disseminated by various means, including radio and satellite navigation systems, telephone modems, and portable clocks.

Special purpose receivers are available for many time-dissemination services, including the Global Posi- tion System (GPS) and other services operated by various national governments. For reasons of cost and convenience, it is not possible to equip every computer with one of these receivers. However, it is possi- ble to equip some computers with these clocks, which then act as primary time servers to synchronize a much larger number of secondary servers and clients connected by a common network. In order to do this, a distributed network clock synchronization protocol is required which can read a server clock, transmit the reading to one or more clients, and adjust each client clock as required. Protocols that do this include NTP.

Note. The Alcatel OmniSwitch 6000, 7000, and 8000 series switches can only be NTP clients in an NTP network. They cannot act as NTP servers.

page 3-4

OmniSwitch 6600 Family Switch Management Guide March 2005

Page 78
Image 78
Alcatel Carrier Internetworking Solutions omniswitch manual NTP Overview

omniswitch specifications

Alcatel Carrier Internetworking Solutions offers the OmniSwitch series, renowned for its robust capabilities in delivering high-performance networking solutions tailored for a variety of enterprise and service provider environments. The OmniSwitch series is particularly recognized for its scalability, flexibility, and the depth of its feature set, making it a popular choice for organizations that demand reliable and efficient networking solutions.

One of the standout features of the OmniSwitch series is its advanced Layer 2 and Layer 3 switching capabilities, providing organizations with essential support for IP routing and robust Ethernet networking. This versatility ensures that the switch can seamlessly integrate into existing network architectures, facilitating smooth upgrade paths in response to evolving business needs. The OmniSwitch includes support for multiple protocols like RIP, OSPF, and BGP, making it suitable for complex networking topologies.

In terms of performance, OmniSwitch devices are engineered to handle high bandwidth demands. With features such as hardware-based forwarding, they ensure low latency and minimal packet loss, which are critical for applications sensitive to delays such as VoIP and video conferencing. Furthermore, they support Power over Ethernet (PoE), allowing users to power devices like IP phones and security cameras directly through the network.

Security is another key characteristic of the OmniSwitch series. It includes advanced security features such as robust access control lists (ACLs), port security, and built-in support for IEEE 802.1X authentication. These features collectively enhance the security posture of the network, protecting sensitive data and ensuring that only authorized devices can access the network resources.

The OmniSwitch is also designed with redundancy and reliability in mind. Features like Rapid Spanning Tree Protocol (RSTP) and Virtual Router Redundancy Protocol (VRRP) ensure that network uptime is maximized and that failover is swift in the event of a hardware failure. This makes it a viable option for organizations that cannot afford downtime.

In addition to these features, Alcatel's OmniSwitch series comes equipped with a user-friendly management interface. This interface simplifies the setup, configuration, and monitoring of the network, making it accessible even to those with limited networking expertise. Through intuitive dashboards and support for SNMP, administrators can manage their networks effectively.

In conclusion, Alcatel Carrier Internetworking Solutions' OmniSwitch series offers a comprehensive suite of features tailored to meet the needs of modern networks. With its blend of performance, scalability, security, and ease of management, the OmniSwitch stands out as a preferred choice for businesses seeking to enhance their networking infrastructure.