Configuring Network Time Protocol (NTP)

NTP Overview

 

 

 

 

Stratum

Stratum is the term used to define the relative proximity of a node in a network to a time source (such as a radio clock). Stratum 1 is the server connected to the time source itself. (In most cases the time source and the stratum 1 server are in the same physical location.) An NTP client or server connected to a stratum 1 source would be stratum 2. A client or server connected to a stratum 2 machine would be stratum 3, and so on, as demonstrated in the diagram below.

UTC Time Source

Stratum 1

Stratum 2

Stratum 3

The farther away from stratum 1 a device is, the more likely there will be discrepancies or errors in the time adjustments done by NTP. A list of stratum 1 and 2 sources available to the public can be found on the Internet.

Note. It is not required that NTP be connected to an officially recognized time source (for example, a radio clock). NTP can use any time source to synchronize time in the network.

Using NTP in a Network

NTP operates on the premise that there is one true standard time (defined by UTC), and that if several servers claiming synchronization to the standard time are in disagreement, then one or more of them must be out of synchronization or not functioning correctly. The stratum gradiation is used to qualify the accu- racy of a time source along with other factors such as advertised precision and the length of the network path between connections. NTP operates with a basic distrust of time information sent from other network entities, and is most effective when multiple NTP time sources are integrated together for checks and crosschecks. To achieve this end, there are several modes of operation that an NTP entity can use when synchronizing time in a network. These modes help predict how the entity behaves when requesting or sending time information, listed below:

A switch can be a client of an NTP server (usually of a lower stratum), receiving time information from the server but not passing it on to other switches.

A switch can be a client of an NTP server, and in turn be a server to another switch or switches.

A switch (regardless of its status as either a client or server) must be peered with another switch. Peer- ing allows NTP entities in the network of the same stratum to regard each other as reliable sources of time and exchange time information.

OmniSwitch 6600 Family Switch Management Guide March 2005

page 3-5

Page 79
Image 79
Alcatel Carrier Internetworking Solutions omniswitch manual Stratum, Using NTP in a Network

omniswitch specifications

Alcatel Carrier Internetworking Solutions offers the OmniSwitch series, renowned for its robust capabilities in delivering high-performance networking solutions tailored for a variety of enterprise and service provider environments. The OmniSwitch series is particularly recognized for its scalability, flexibility, and the depth of its feature set, making it a popular choice for organizations that demand reliable and efficient networking solutions.

One of the standout features of the OmniSwitch series is its advanced Layer 2 and Layer 3 switching capabilities, providing organizations with essential support for IP routing and robust Ethernet networking. This versatility ensures that the switch can seamlessly integrate into existing network architectures, facilitating smooth upgrade paths in response to evolving business needs. The OmniSwitch includes support for multiple protocols like RIP, OSPF, and BGP, making it suitable for complex networking topologies.

In terms of performance, OmniSwitch devices are engineered to handle high bandwidth demands. With features such as hardware-based forwarding, they ensure low latency and minimal packet loss, which are critical for applications sensitive to delays such as VoIP and video conferencing. Furthermore, they support Power over Ethernet (PoE), allowing users to power devices like IP phones and security cameras directly through the network.

Security is another key characteristic of the OmniSwitch series. It includes advanced security features such as robust access control lists (ACLs), port security, and built-in support for IEEE 802.1X authentication. These features collectively enhance the security posture of the network, protecting sensitive data and ensuring that only authorized devices can access the network resources.

The OmniSwitch is also designed with redundancy and reliability in mind. Features like Rapid Spanning Tree Protocol (RSTP) and Virtual Router Redundancy Protocol (VRRP) ensure that network uptime is maximized and that failover is swift in the event of a hardware failure. This makes it a viable option for organizations that cannot afford downtime.

In addition to these features, Alcatel's OmniSwitch series comes equipped with a user-friendly management interface. This interface simplifies the setup, configuration, and monitoring of the network, making it accessible even to those with limited networking expertise. Through intuitive dashboards and support for SNMP, administrators can manage their networks effectively.

In conclusion, Alcatel Carrier Internetworking Solutions' OmniSwitch series offers a comprehensive suite of features tailored to meet the needs of modern networks. With its blend of performance, scalability, security, and ease of management, the OmniSwitch stands out as a preferred choice for businesses seeking to enhance their networking infrastructure.