Chapter 16. Managing Networks and Traffic

9.To remove a VPN connection, click the Delete VPN connection button

To restart a VPN connection, click the Reset VPN connection button present in the Details tab.

16.25. Isolation in Advanced Zone Using Private VLAN

Isolation of guest traffic in shared networks can be achieved by using Private VLANs (PVLAN). PVLANs provide Layer 2 isolation between ports within the same VLAN. In a PVLAN-enabled shared network, a user VM cannot reach other user VM though they can reach the DHCP server and gateway, this would in turn allow users to control traffic within a network and help them deploy multiple applications without communication between application as well as prevent communication with other users’ VMs.

Isolate VMs in a shared networks by using Private VLANs.

Supported on KVM, XenServer, and VMware hypervisors

PVLAN-enabled shared network can be a part of multiple networks of a guest VM.

16.25.1. About Private VLAN

In an Ethernet switch, a VLAN is a broadcast domain where hosts can establish direct communication with each another at Layer 2. Private VLAN is designed as an extension of VLAN standard to add further segmentation of the logical broadcast domain. A regular VLAN is a single broadcast domain, whereas a private VLAN partitions a larger VLAN broadcast domain into smaller sub-domains. A sub- domain is represented by a pair of VLANs: a Primary VLAN and a Secondary VLAN. The original VLAN that is being divided into smaller groups is called Primary, which implies that all VLAN pairs in a private VLAN share the same Primary VLAN. All the secondary VLANs exist only inside the Primary. Each Secondary VLAN has a specific VLAN ID associated to it, which differentiates one sub-domain from another.

Three types of ports exist in a private VLAN domain, which essentially determine the behaviour of the participating hosts. Each ports will have its own unique set of rules, which regulate a connected host's ability to communicate with other connected host within the same private VLAN domain. Configure each host that is part of a PVLAN pair can be by using one of these three port designation:

Promiscuous: A promiscuous port can communicate with all the interfaces, including the community and isolated host ports that belong to the secondary VLANs. In Promiscuous mode, hosts are connected to promiscuous ports and are able to communicate directly with resources on both primary and secondary VLAN. Routers, DHCP servers, and other trusted devices are typically attached to promiscuous ports.

Isolated VLANs: The ports within an isolated VLAN cannot communicate with each other at the layer-2 level. The hosts that are connected to Isolated ports can directly communicate only with the Promiscuous resources. If your customer device needs to have access only to a gateway router, attach it to an isolated port.

Community VLANs: The ports within a community VLAN can communicate with each other and with the promiscuous ports, but they cannot communicate with the ports in other communities at the layer-2 level. In a Community mode, direct communication is permitted only with the hosts in the same community and those that are connected to the Primary PVLAN in promiscuous mode. If your customer has two devices that need to be isolated from other customers' devices, but to be able to communicate among themselves, deploy them in community ports.

For further reading:

200

Page 210
Image 210
Citrix Systems 4.2 manual Isolation in Advanced Zone Using Private Vlan, About Private Vlan

4.2 specifications

Citrix Systems, a leading provider of virtualization solutions and cloud computing technologies, released version 4.2 of its popular software, Citrix XenApp, which was previously known as Presentation Server. This version marked a significant evolution in providing users with remote access to applications and desktops, emphasizing simplicity, performance, and security.

One of the standout features of Citrix XenApp 4.2 is its improved application streaming capabilities. This technology allows applications to be delivered to users in real-time, reducing the need for extensive local installations and enhancing the user experience. With application streaming, administrators can efficiently manage applications on a central server while ensuring that users have immediate access to the necessary tools.

Another highlight of this version is the enhanced security measures put in place to protect sensitive data. Citrix XenApp 4.2 includes support for SSL encryption, providing a secure communication channel for data transmitted between the server and clients. This is particularly crucial for businesses that need to comply with strict data protection regulations. Additionally, the integration of endpoint security features ensures that unauthorized access to applications is minimized.

Performance enhancements are also a critical focus in this release. Citrix optimized the delivery of applications over various network conditions, ensuring that users experience minimal latency regardless of their location. This was achieved through the incorporation of SmartAccess and SmartControl technologies, which allow administrators to set policies based on user roles, device types, and network conditions. This level of granularity enables organization-wide security without compromising on usability.

The user experience was further improved with a revamped interface, making it easier for end-users to access their applications and data. Simplified menus, clear navigation paths, and the ability to customize user settings contributed to a more efficient workflow, allowing users to focus on their tasks rather than struggling with the software.

Finally, Citrix XenApp 4.2 was designed to be highly scalable. Organizations of all sizes could deploy this solution to deliver applications efficiently, adapting to their specific needs as their user base grows or changes. This flexibility is crucial for businesses looking to future-proof their IT investments while maintaining optimal performance.

In summary, Citrix XenApp 4.2 stands out with its enhanced application streaming, robust security features, improved performance under varying conditions, user-friendly interface, and scalability, making it an ideal choice for organizations seeking to leverage virtualization for remote access to applications and desktops.