CY7C1217H
Document #: 38-05670 Rev. *B Page 6 of 16
ZZ Mode Electrical Characteristics
Parameter Description Test Conditions Min. Max. Unit
IDDZZ Sleep mode standby current ZZ > VDD – 0.2V 40 mA
tZZS Device operation to ZZ ZZ > VDD – 0.2V 2tCYC ns
tZZREC ZZ recovery time ZZ < 0.2V 2tCYC ns
tZZI ZZ Active to sleep current This parameter is sampled 2tCYC ns
tRZZI ZZ Inactive to exit sleep current This parameter is sampled 0 ns
Truth Table[2, 3, 4, 5, 6]
Cycle Description Address
Used CE1CE2CE3ZZ ADSP ADSC ADV WRITE OE CLK DQ
Deselected Cycle,
Power-down None H X X L X L X X X L-H Tri-State
Deselected Cycle,
Power-down None L L X L L X X X X L-H Tri-State
Deselected Cycle,
Power-down None L X H L L X X X X L-H Tri-State
Deselected Cycle,
Power-down None L L X L H L X X X L-H Tri-State
Deselected Cycle,
Power-down None X X X L H L X X X L-H Tri-State
Sleep Mode, Power-down None X X X H X X X X X X Tri-State
Read Cycle, Begin Burst External L H L L L X X X L L-H Q
Read Cycle, Begin Burst External L H L L L X X X H L-H Tri-State
Write Cycle, Begin Burst External L H L L H L X L X L-H D
Read Cycle, Begin Burst External L H L L H L X H L L-H Q
Read Cycle, Begin Burst External L H L L H L X H H L-H Tri-State
Read Cycle, Continue Burst Next X X X L H H L H L L-H Q
Read Cycle, Continue Burst Next X X X L H H L H H L-H Tri-State
Read Cycle, Continue Burst Next H X X L X H L H L L-H Q
Read Cycle, Continue Burst Next H X X L X H L H H L-H Tri-State
Write Cycle, Continue Burst Next X X X L H H L L X L-H D
Write Cycle, Continue Burst Next H X X L X H L L X L-H D
Read Cycle, Suspend Burst Current X X X L H H H H L L-H Q
Read Cycle, Suspend Burst Current X X X L H H H H H L-H Tri-State
Read Cycle, Suspend Burst Current H X X L X H H H L L-H Q
Read Cycle, Suspend Burst Current H X X L X H H H H L-H Tri-State
Write Cycle, Suspend Burst Current X X X L H H H L X L-H D
Write Cycle, Suspend Burst Current H X X L X H H L X L-H D
Notes:
2. X = β€œDon't Care.” H = Logic HIGH, L = Logic LOW.
3. WRITE = L when any one or more Byte Write Enable signals (BWA, BWB, BWC, BWD) and BWE = L or GW = L. WRITE = H when all Byte Write Enable signals
(BWA, BWB, BWC, BWD), BWE, GW = H.
4. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.
5. The SRAM always initiates a Read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW[A: D]. Writes may occur only on subsequent clocks
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the Write cycle to allow the outputs to tri-state. OE is a
don't care for the remainder of the Write cycle.
6. OE is asynchronous and is not sampled with the clock rise. It is masked internally during Write cycles. During a Read cycle all data bits are tri-state when OE is
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).
[+] Feedback