Installation

Battery Location

Batteries must be installed in Liebert NX 480V battery cabinets or battery room. Temperature is a major factor in determining battery life and capacity. Battery manufacturers recommend an operat- ing temperature of 77°F (25°C). Ambient temperatures higher than this reduce battery life; tempera- tures lower than this reduce battery capacity. In a typical installation, battery temperature should be maintained between 74°F and 80°F (23-27°C). Batteries should be placed where there are no main heat sources or air inlets to prevent portions of batteries from being either much warmer or much cooler than other parts of the batteries.

1.4.3Special Considerations for Parallel Systems

1.Consider the grounding configuration of your system before finalizing module placement. For optimal ground performance, the Liebert NX modules should be close together.

2.For optimal load-sharing performance, the UPS output cables should be approximately the same length, plus or minus 20 percent.

3.Position modules in such a way as to minimize the length of power cables and control wiring between UPS modules and the paralleling cabinet.

1.5Considerations in Moving the Liebert NX

Ensure that the UPS weight is within the designated surface weight loading (lb./ft2 or kg/cm2) of any handling equipment. See Table 7 for weights of various units.

To move the UPS and optional battery cabinets:

The Liebert NX may be rolled on its casters when moving the unit a short distance. For longer dis- tances, move the UPS with a forklift or similar equipment to ease the relocation and to reduce vibration.

The optional battery cabinets should be moved with a forklift or similar equipment.

! WARNING

Ensure that any equipment that will be used to move the Liebert NX has sufficient lifting capacity. The Liebert NX weight ranges from 1180 to 1290 lb. (535 to 585kg). See Table 7 for details. The UPS presents a tipping hazard. Do not tilt the Liebert NX further than 15 degrees from vertical.

The UPS is fitted with casters—take care to prevent movement when unbolting the equipment from its shipping pallet. Ensure adequate personnel and lifting equipment are available when taking the Liebert NX off its shipping pallet. Do not tilt the unit more than 15 degrees from center.

! WARNING

The casters are strong enough for movement across even surfaces only. Casters may fail if they are subjected to shock loading, such as being dropped or rolled over holes in the floor or obstructions. Such failure may cause the unit to tip over, injuring personnel and damaging the equipment.

Care must be taken when maneuvering cabinets fitted with batteries. Keep such moves to a minimum. For further information, see Battery Cabinet Precautions on page 2.

Final Position

When the equipment has been finally positioned, ensure that the adjustable stops are set so that the UPS will remain stationary and stable (see 6.0 - Installation Drawings).

1.6Mechanical Considerations

The Liebert NX is constructed with a steel frame and removable panels. Top and side panels are secured to the chassis by screws. The doors may be opened for access to power connections bars, aux- iliary terminal blocks and power switches.

The UPS comes with an operator control panel, which provides basic operational status and alarm information. Cooling is provided by internal fans. The unit sits on four casters. Adjustable stops are provided to prevent the UPS from moving once it has been moved to its final position.

6

Page 14
Image 14
Emerson 480V Considerations in Moving the Liebert NX, Mechanical Considerations, Battery Location, Final Position

480V specifications

The Emerson 480V power systems play a critical role in modern industrial applications, providing reliable and efficient power distribution. These systems are designed for facilities that require robust performance and operational efficiency while adhering to safety regulations. With voltage ratings at 480V, they cater primarily to industries such as manufacturing, data centers, and commercial buildings.

One of the main features of the Emerson 480V systems is their scalability. These systems can be easily adapted and expanded as operational demands grow, thereby reducing initial investment costs and providing a flexible solution for evolving business needs. This ability to scale is crucial in a fast-paced environment where demands can change rapidly.

The Emerson 480V systems also incorporate advanced technologies for improved performance and safety. One key technology is the use of smart grid solutions. This enables real-time monitoring, diagnostics, and control, allowing facility managers to optimize energy consumption and reduce operational costs. Furthermore, these systems often include integrated protection devices that enhance safety measures by minimizing the risk of electrical faults, overloads, or short circuits.

Energy efficiency is another characteristic that distinguishes Emerson 480V systems from traditional alternatives. With advanced power management features, these systems effectively reduce energy waste and lower electricity bills. Emerson’s commitment to sustainability is evident in its designs, which aim to minimize environmental impact through energy-efficient technologies.

The build quality of Emerson 480V systems is also noteworthy. They are designed to withstand harsh industrial environments and are constructed with high-grade materials that promote longevity and reliability. The modular design allows for easy maintenance and repair, which further extends the lifespan of the system.

Additionally, Emerson 480V systems are equipped with user-friendly interfaces that facilitate ease of operation. This ensures that operators can efficiently manage and control power distribution without extensive training. The combination of performance, scalability, safety features, and user-centric design makes Emerson 480V systems an ideal choice for businesses looking to enhance their electrical infrastructure.

In summary, Emerson 480V power systems are a leading solution for industrial power distribution, characterized by their scalability, smart technology integration, energy efficiency, robust build quality, and user-friendly operation. These attributes make them a valuable investment for any organization aiming to improve its electrical management and operational performance.