6 User’s Reference Guide

router: A device that supports network communications. A router can connect identical network types, such as LocalTalk-to-LocalTalk, or dissimilar network types, such as LocalTalk-to-Ethernet. However—unless a gateway is available—a common protocol, such as TCP/IP, must be used over both networks. Routers may be equipped to provide WAN line support to the LAN devices they serve. They may also provide various management and monitoring functions as well as a variety of configuration capabilities.

router port: A physical or logical connection between a router and a network. Where a network only allows the use of one protocol, each physical connection corresponds to one logical router port. An example is the Netopia ISDN Router’s LocalTalk port. Where a network allows the use of several protocols, each physical connection may correspond to several logical router ports—one for each protocol used. Each router port has its own network address.

routing table: A list of networks maintained by each router on an internet. Information in the routing table helps the router determine the next router to forward packets to.

SDLC (Synchronous Data Link Control): A link-level communications protocol used in an International Business Machines (IBM) Systems Network Architecture (SNA) network that manages synchronous, code-transparent, serial information transfer over a link connection. SDLC is a subset of the more generic HDLC (High-Level Data Link Control) protocol developed by the International Organization for Standardization (ISO).

seeding: A method for ensuring that two or more routers agree about which physical networks correspond to

which network numbers and zone names. There are three options: non-seeding, soft seeding, and hard seeding. Seeding can often be set separately for each router port. See also hard seeding, non-seeding, seed router, and soft seeding.

seed router: A router that provides network number and zone information to any router that starts up on the same network. See also hard seeding, non-seeding, seeding, and soft seeding.

serial port: A connector on the back of the workstation through which data flows to and from a serial device.

server: A device or system that has been specifically configured to provide a service, usually to a group of clients.

SNMP (Simple Network Management Protocol): A protocol used for communication between management consoles and network devices. The Netopia ISDN Router can be managed through SNMP.

soft seeding: A router setting. In soft seeding, if a router that has just been reset detects a network number or zone name conflict between its configured information for a particular port and the information provided by another router connected to that port, it updates its configuration using the information provided by the other router. See also hard seeding, non-seeding, seeding, and seed router.

subnet: A network address created by using a subnet mask to specify that a number of bits in an internet address will be used as a subnet number rather than a host address.

subnet mask: A 32-bit number to specify which part of an internet address is the network number, and which part is the host address. When written in binary notation, each bit written as 1 corresponds to 1 bit of network address information. One subnet mask applies to all IP devices on an individual IP network.

TCP/IP (Transmission Control Protocol/Internet Protocol): An open network standard that defines how devices from different manufacturers communicate with each other over one or more interconnected networks. TCP/IP protocols are the foundation of the Internet, a worldwide network of networks connecting businesses, governments, researchers, and educators.

telephone wall cable: 2-pair, 4-pair, or 8-pair, 22- or 24-gauge solid copper wire cable. Telephone wall cable is sometimes called telephone station cable or twisted-pair cable.

Page 234
Image 234
Farallon Communications R9100 manual User’s Reference Guide

R9100 specifications

Farallon Communications R9100 is a high-performance network device designed to meet the demanding needs of modern telecommunications. This robust system specializes in delivering reliable, efficient, and scalable solutions for various networking environments. Its architectural design integrates cutting-edge technologies that enhance performance while ensuring compatibility with existing infrastructure.

One of the standout features of the R9100 is its advanced routing capabilities. Equipped with powerful processors, it supports multiple routing protocols, including OSPF, BGP, and EIGRP. This flexibility allows network administrators to optimize data flow and maintain seamless connectivity across diverse network topologies. The R9100 also includes sophisticated Quality of Service (QoS) mechanisms, enabling prioritization of critical traffic, which is essential for latency-sensitive applications.

Another significant aspect of the R9100 is its support for various interfaces. Whether organizations require Ethernet, fiber, or wireless connections, the R9100 accommodates a broad range of interface options. This versatility ensures that it can be deployed in various environments, from large enterprise networks to smaller branch offices.

Security is a crucial consideration in today’s networking landscape, and the R9100 addresses this with built-in security features. These include stateful firewall capabilities, Intrusion Detection System (IDS), and comprehensive Virtual Private Network (VPN) support. Such features allow organizations to safeguard sensitive data and maintain compliance with industry regulations.

The R9100 also prioritizes ease of management. With a user-friendly interface and robust monitoring tools, network administrators can easily configure and manage the device. This capability facilitates rapid troubleshooting and performance tuning, ensuring minimal downtime and optimal user experience.

Energy efficiency is an additional characteristic that sets the R9100 apart from its competitors. Designed with eco-friendly technologies, it minimizes power consumption while maximizing output, making it an ideal choice for organizations looking to reduce their carbon footprint.

In conclusion, Farallon Communications R9100 stands out as a versatile and powerful network device that meets the complexities of modern telecommunications. With its advanced routing features, robust security measures, varied interface options, and energy-efficient design, the R9100 is a formidable player in the networking landscape. Organizations can rely on this solution to enhance their network performance and evolve alongside their growing technological needs.