Glossary 3

DTE (Data Terminal Equipment): Term defined by standards committees, that applies to communications equipment, typically personal computers or data terminals, as distinct from other devices that attach to the network, typically modems or printers (DCE). The distinction generally refers to which pins in an RS-232-C connection transmit or receive data. Pins 2 and 3 are reversed. Also see DCE.

EIA (Electronic Industry Association): A North American standards association.

Ethernet: A networking protocol that defines a type of LAN characterized by a 10 Mbps (megabits per second) data rate. Ethernet is used in many mainframe, PC, and UNIX networks, as well as for EtherTalk.

Ethernet address: Sometimes referred to as a hardware address. A 48-bits long number assigned to every Ethernet hardware device. Ethernet addresses are usually expressed as 12-character hexadecimal numbers, where each hexadecimal character (0 through F) represents four binary bits. Do not confuse the Ethernet address of a device with its network address.

EtherTalk: Apple’s data-link software that allows an AppleTalk network to be connected by Ethernet cables. EtherTalk is a protocol within the AppleTalk protocol set. Two versions of EtherTalk are in common use, designated as Phase I and Phase II EtherTalk.

extended network: A network using AppleTalk Phase II protocols; EtherTalk 2.0 and TokenTalk are extended networks. LocalTalk networks are compatible with Phase II but are not extended because a single LocalTalk network cannot have multiple network numbers or multiple zone names.

firmware: System software stored in a device’s memory that controls the device. The Netopia ISDN Router’s firmware can be updated.

gateway: A device that connects two or more networks that use different protocols. Gateways provide address translation services, but do not translate data. Gateways must be used in conjunction with special software packages that allow computers to use networking protocols not originally designed for them.

hard seeding: A router setting. In hard seeding, if a router that has just been reset detects a network number or zone name conflict between its configured information and the information provided by another router, it disables the router port for which there is a conflict. See also non-seeding, seeding, seed router, and soft seeding.

HDLC (High-Level Data Link Control): A generic link-level communications protocol developed by the International Organization for Standardization (ISO). HDLC manages synchronous, code-transparent, serial information transfer over a link connection. See also SDLC (Synchronous Data Link Control).

header: In packets, a header is part of the envelope information that surrounds the actual data being transmitted. In e-mail, a header is usually the address and routing information found at the top of messages.

hop: A single traverse from one node to another on a LAN.

hop count: The number of nodes (routers or other devices) a packet has gone through. If there are six routers between source and destination nodes, the hop count for the packet will be six when it arrives at its destination node. The maximum allowable hop count is usually 15.

hop count reduction: A feature of AURP supported by the Netopia ISDN Router. Tunnels and point-to-point links over WANs can often exceed the maximum allowable hop count of 15 routers. Network administrators can use the hop count reduction feature to set up tunnels and point-to-point links that exceed the 15-router limit.

host: A single, addressable device on a network. Computers, networked printers, and routers are hosts.

host computer: A communications device that enables users to run applications programs to perform such functions as text editing, program execution, access to data bases, etc.

Page 231
Image 231
Farallon Communications R9100 manual Glossary

R9100 specifications

Farallon Communications R9100 is a high-performance network device designed to meet the demanding needs of modern telecommunications. This robust system specializes in delivering reliable, efficient, and scalable solutions for various networking environments. Its architectural design integrates cutting-edge technologies that enhance performance while ensuring compatibility with existing infrastructure.

One of the standout features of the R9100 is its advanced routing capabilities. Equipped with powerful processors, it supports multiple routing protocols, including OSPF, BGP, and EIGRP. This flexibility allows network administrators to optimize data flow and maintain seamless connectivity across diverse network topologies. The R9100 also includes sophisticated Quality of Service (QoS) mechanisms, enabling prioritization of critical traffic, which is essential for latency-sensitive applications.

Another significant aspect of the R9100 is its support for various interfaces. Whether organizations require Ethernet, fiber, or wireless connections, the R9100 accommodates a broad range of interface options. This versatility ensures that it can be deployed in various environments, from large enterprise networks to smaller branch offices.

Security is a crucial consideration in today’s networking landscape, and the R9100 addresses this with built-in security features. These include stateful firewall capabilities, Intrusion Detection System (IDS), and comprehensive Virtual Private Network (VPN) support. Such features allow organizations to safeguard sensitive data and maintain compliance with industry regulations.

The R9100 also prioritizes ease of management. With a user-friendly interface and robust monitoring tools, network administrators can easily configure and manage the device. This capability facilitates rapid troubleshooting and performance tuning, ensuring minimal downtime and optimal user experience.

Energy efficiency is an additional characteristic that sets the R9100 apart from its competitors. Designed with eco-friendly technologies, it minimizes power consumption while maximizing output, making it an ideal choice for organizations looking to reduce their carbon footprint.

In conclusion, Farallon Communications R9100 stands out as a versatile and powerful network device that meets the complexities of modern telecommunications. With its advanced routing features, robust security measures, varied interface options, and energy-efficient design, the R9100 is a formidable player in the networking landscape. Organizations can rely on this solution to enhance their network performance and evolve alongside their growing technological needs.