. . .8–12

ge.com

Profile de vino y bebidas

Instrucciones de seguridad . . . . . .2, 3

Instrucciones de operación

Centro de bebidas

Consejos y sugerencias de carga . . . . . . . .4 Control de temperatura . . . . . . . . . . . . . . . . .4 Estantes de cristal . . . . . . . . . . . . . . . . . . . . . .4

Refrigerador de vino

Consejos y sugerencias de carga . . . . . . . .5 Control de temperatura . . . . . . . . . . . . . . . . . .5 Inserción de botellas de vino . . . . . . . . . . . . .5

Centro de bebidas y Refrigerador de vino Frontales de madera de los cajones . . . . . .6 Luz interior e interruptor . . . . . . . . . . . . . . . .6 Quitar los cajones de

extensión completa . . . . . . . . . . . . . . . . . . . . .6

Manual del propietario

e instalación

Refrigerador Centro de

Cuidado y limpieza . . . . . . . . . . . . . . . . .7

Instrucciones de instalación

Invertir el sentido de

apertura de la puerta . . . . . . . . . . . . . . . . . .11 Nivelado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Ubicación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Consejos para la solución

de problemas . . . . . . . . . . . . . . . . . . .14, 15 Sonidos de funcionamiento normales . . . .13

Soporte al consumidor

Soporte al consumidor . . . . . . . . . . . . . . . . .20

Garantía . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Anote aquí los números de serie y de modelo:

Modelo n° __________________

Serie n°____________________

Busque estos números en la etiqueta que se encuentra en el techo dentro del refrigerador de vino y centro de bebidas.

197D7188P001 49-60451 02-06 JR

Page 21
Image 21
GE 197D7188P001, 49-60451 operating instructions Refrigerador Centro de

197D7188P001, 49-60451 specifications

The GE 49-60451, also known as 197D7188P001, is a vital component within the domain of gas turbine technology, primarily utilized in the aerospace industry. Designed to optimize engine performance and enhance reliability, this model represents the cutting-edge advancements in aircraft propulsion systems.

One of the key features of the GE 49-60451 is its superior materials engineering. It incorporates high-temperature alloys and advanced composite materials that withstand the extreme conditions encountered during flight. This ensures durability and longevity, enabling the turbine to operate efficiently over extended periods, while resisting thermal fatigue and corrosion.

The technology behind the GE 49-60451 revolves around innovative aerodynamics. The design utilizes advanced computational fluid dynamics (CFD) simulations, allowing for the optimization of airflow through the turbine stages. This results in improved thrust-to-weight ratios and enhanced fuel efficiency, which are critical factors in modern aviation where cost-effectiveness is paramount.

Another notable characteristic of the GE 49-60451 is its modular design. This allows for easier maintenance and faster turnaround times in aircraft servicing. The modular approach not only facilitates efficient diagnostics and repairs but also aids in the rapid replacement of components, reducing downtime and enhancing operational availability.

Additionally, the integration of digital technologies is a significant aspect of the GE 49-60451. With the advent of the Internet of Things (IoT), this model is equipped with advanced sensors that monitor various operational parameters in real time. This data is vital for predictive maintenance, enabling operators to preemptively address issues before they escalate, thereby ensuring safer and more reliable flights.

The GE 49-60451 also adheres to stringent environmental standards. Its design emphasizes reduced emissions and lower noise levels, aligning with global initiatives to make aviation more sustainable. The combination of these features contributes to less environmental impact, meeting the needs of modern regulatory frameworks.

In conclusion, the GE 49-60451, or 197D7188P001, stands out for its exceptional engineering, cutting-edge technology, and commitment to sustainability. Its high-performance capabilities make it an indispensable component in the future of aviation propulsion systems, ensuring that operators benefit from both efficiency and reliability while minimizing their environmental footprint.