iRISM-186 COMMANDS

6.5.1SET_DATA_FLAG (Code 00H)

This command sets the DATA_FLAG. This forces the next character received by the RISM to be treated as data, even if its value corresponds to a RISM command. The code that over- rides the normal selection of command or data also clears the DATA_FLAG so that it applies only to the first character received after the SET_DATA_FLAG command.

6.5.2TRANSMIT (Code 02H)

This command transmits the lower eight bits of the RISM_DATA register to the host, right shifts the data register eight places, and increments the RISM_ADDR register. Sequential TRANSMIT commands are used to read the RISM_DATA register; the RISM_ADDR reg- ister indicates the address that corresponds to the least-significant byte in the RISM_DATA register.

6.5.3READ_BYTE (Code 04H)

This command reads the byte of memory pointed to by the RISM_ADDR register and places the result in the least-significant byte of the RISM_DATA register.

6.5.4READ_WORD (Code 05H)

This command reads the word of memory pointed to by the RISM_ADDR register and places the result in the least-significant word of the RISM_DATA register.

6.5.5READ_DOUBLE (Code 06H)

This command reads the double-word of memory pointed to by the address register and places the result in the RISM_DATA register.

6.5.6WRITE_BYTE (Code 07H)

This command stores the least-significant byte of the RISM_DATA register in the byte of memory pointed to by the RISM_ADDR register and increments the RISM_ADDR register (by one) to point to the next memory byte.

6.5.7WRITE_WORD (Code 08H)

This command stores the least-significant word of the RISM_DATA register in the word of memory pointed to by the RISM_ADDR register and increments the RISM_ADDR register (by two) to point at the next memory word.

6-3

6

Page 73
Image 73
Intel 80L186EB Setdataflag Code 00H, Transmit Code 02H, Readbyte Code 04H, Readword Code 05H, Readdouble Code 06H

80L188EB, 80C188EC, 80C188EB, 80L186EB, 80C186EB specifications

The Intel 80L188EC, 80C186EC, 80L186EC, 80C186EB, and 80L186EB microprocessors represent a significant evolution in Intel's 16-bit architecture, serving various applications in embedded systems and computing during the late 1980s and early 1990s. These microprocessors are designed to offer a blend of performance, efficiency, and versatility, making them suitable for a range of environments, including industrial control, telecommunications, and personal computing.

The Intel 80L188EC is a member of the 186 family, notable for its low-power consumption and integrated support for a range of peripheral devices. It operates at clock speeds of up to 10 MHz and features a 16-bit architecture, providing a balance of processing power and energy efficiency. The 80C186EC, on the other hand, is a more advanced version, offering enhanced performance metrics with faster clock speeds and improved processing capabilities, making it ideal for applications that require more computational power.

The 80L186EC shares similarities with the 80L188EC but is enhanced further for various low-power applications, especially where battery life is crucial. With a maximum clock speed of 16 MHz, it excels in scenarios demanding energy-efficient processing without sacrificing performance.

In contrast, the 80C186EB and 80L186EB are optimized versions that bring additional features to the table. The 80C186EB operates at higher clock speeds, coupled with an extended instruction set, enabling it to handle more complex tasks and run sophisticated software. These enhancements allow it to serve well in environments that require reliable performance under load, such as data acquisition systems or advanced control systems.

The 80L186EB is tailored for specific low-power scenarios, integrating Intel's sophisticated low-power technologies without compromising on speed. Utilizing advanced process technologies, these chips benefit from reduced heat output and extended operating life, a significant advantage in embedded applications.

Overall, these microprocessors showcase Intel's commitment to innovation in 16-bit processing, marked by their varying capabilities and power profiles tailored to meet the demands of diverse applications, from industrial systems to consumer electronics. Their legacy continues to influence subsequent generations of microprocessor designs, emphasizing performance, energy efficiency, and versatile applications in computing technology. As such, the Intel 80C186 and 80L188 families play a crucial role in understanding the evolution of microprocessor technology.