37.2 Latency and Monitoring

The term Zero Latency Monitoring has been introduced by RME in 1998 for the DIGI96 series of audio cards. It stands for the ability to pass-through the computer's input signal at the inter- face directly to the output. Since then, the idea behind has become one of the most important features of modern hard disk recording. In the year 2000, RME published two ground-breaking Tech Infos on the topics Low Latency Background, which are still up-to-date: Monitoring, ZLM and ASIO, and Buffer and Latency Jitter, both found on the RME Driver CD and the RME web- site.

How much Zero is Zero?

From a technical view there is no zero. Even the analog pass-through is subject to phase er- rors, equalling a delay between input and output. However, delays below certain values can subjectively be claimed to be a zero-latency. This applies to analog routing and mixing, and in our opinion also to RME's Zero Latency Monitoring. The term describes the digital path of the audio data from the input of the interface to its output. The digital receiver of the Fireface 800 can't operate un-buffered, and together with TotalMix and the output via the transmitter, it causes a typical delay of 3 samples. At 44.1 kHz this equals about 68 µs (0.000068 s), at 192 kHz only 15 µs. The delay is valid for ADAT and SPDIF in the same way.

Oversampling

While the delays of digital interfaces can be disregarded altogether, the analog inputs and out- puts do cause a significant delay. Modern converter chips operate with 64 or 128 times over- sampling plus digital filtering, in order to move the error-prone analog filters away from the au- dible frequency range as far as possible. This typically generates a delay of one millisecond. A playback and re-record of the same signal via DA and AD (loopback) then causes an offset of the newly recorded track of about 2 ms. The exact delays of the Fireface 800 are:

Sample frequency kHz

44.1

48

88.2

96

176.4

192

 

 

 

 

 

 

 

AD (43.2 x 1/fs) ms

0.98

0.9

0.49

0.45

 

 

 

 

 

 

 

 

 

AD (38.2 x 1/fs) ms

 

 

 

 

0.22

0.2

 

 

 

 

 

 

 

DA (43.5 x 1/fs) ms

0.99

0.9

0.49

0.45

0.25

0.23

 

 

 

 

 

 

 

DA (28 x 1/fs) ms *

0.63

0.58

0.32

0.29

0.16

0.15

 

 

 

 

 

 

 

*The second DA values are valid for units built since around march 2005 (AK4396 instead of AK4395). The driver detects the version automatically and transmits the correct offsets.

Buffer Size (Latency)

Windows: This option found in the Settings dialog defines the size of the buffers for the audio data used in ASIO and GSIF (see chapter 13 and 14).

Mac OS X: The buffer size is defined within the application. Only some do not offer any setting. For example iTunes is fixed to 512 samples.

General: A setting of 64 samples at 44.1 kHz causes a latency of 1.5 ms, for record and play- back each. But when performing a digital loopback test no latency/offset can be detected. The reason is that the software naturally knows the size of the buffers, therefore is able to position the newly recorded data at a place equalling a latency-free system.

AD/DA Offset under ASIO and OS X: ASIO (Windows) and Core Audio (Mac OS X) allow for the signalling of an offset value to correct buffer independent delays, like AD- and DA-conversion or the Safety Buffer described below. An analog loopback test will then show no offset, because the application shifts the recorded data accordingly. Because in real world operation analog record and playback is unavoidable, the drivers include an offset value matching the Fireface's converter delays.

96

User's Guide Fireface 800 © RME

Page 96
Image 96
Intel Fireface 800 Latency and Monitoring, How much Zero is Zero?, Oversampling, Sample frequency kHz 44.1 88.2 176.4 192

Fireface 800 specifications

The Intel Fireface 800 is a powerful audio interface celebrated for its high-performance capabilities and versatility in both studio and live settings. Designed to cater to the needs of musicians, producers, and sound engineers, it stands out with its rich feature set and reliable technology.

One of the defining features of the Fireface 800 is its support for an impressive 26 input and 28 output channels. This extensive I/O configuration facilitates seamless integration with a wide variety of audio production setups, allowing users to record multiple instruments simultaneously or create complex routing scenarios. The unit also boasts top-notch analog and digital converters, ensuring pristine sound quality with a dynamic range that captures the nuances of any audio source.

In terms of connectivity, the Fireface 800 is equipped with both FireWire and USB ports, making it compatible with a range of computers and devices. The device utilizes the FireWire 800 protocol, which delivers higher data transfer rates compared to its predecessor. This efficient transfer capability is crucial for maintaining audio fidelity and reducing latency, making it an ideal choice for real-time monitoring and recording.

The Fireface 800 also features standalone operation capabilities, functioning independently of a computer when needed. This is particularly useful for live performances, where reliability and reduced setup complexity are essential. Users can easily connect microphones, instruments, and other equipment directly to the Fireface 800, making it a versatile tool for a variety of scenarios.

With its low-latency driver technology, the Fireface 800 ensures smooth performance even when handling demanding audio tasks. Its advanced ADAT and S/PDIF digital inputs and outputs provide further flexibility for connecting other gear, such as additional preamps and effects processors.

Another noteworthy characteristic of the Fireface 800 is its robust build quality. Designed for regular use in professional environments, the unit features a rugged metal chassis that can withstand the rigors of transport and daily use. This ensures longevity and consistent performance for audio professionals who depend on reliable equipment day in and day out.

In summary, the Intel Fireface 800 is a versatile and powerful audio interface that caters to a wide spectrum of audio production needs. With its extensive I/O capabilities, high-quality converters, reliable connectivity options, and robust design, it continues to be a popular choice among audio professionals striving for excellence in their work.