9.5.8Active LED Out

The Active LED Out signal is driven by the drive as indicated in Table 21.

Table 21: Active LED Out conditions

Normal command activity

LED status

 

 

Spun down and no activity

Slow blink (20% on and 80% off a 2 sec cycle)

 

 

Spun down and activity (command executing)

On

 

 

Spun up and no activity

On

 

 

Spun up and activity (command executing)

Off

 

 

Spinning up or down

Blinks steadily (50% on and 50% off)

 

 

Format in progress, each cylinder change

Toggles on/off

 

 

The Active LED Out signal is designed to pull down the cathode of an LED. The anode is attached to the proper +5 volt supply through an appropriate current limiting resistor. The LED and the current limiting resistor are external to the drive.

9.5.9Enable port bypass signals

The – Enable Bypass Port A (– EN BYP Port A) and – Enable Bypass Port B (– EN BYP Port B) signals control the port bypass circuits (PBC) located external to the disc drive. The PBC allows a loop to remain functional in the event of a drive failure or removal. When these signals are active, low, the PBC bypasses the drive on the associated port. When an Enable Bypass signal is active, the corresponding Port Bypass LED signal in con- nector J1 is driven low by the disc drive. A pull down resistor, 1K, located with the PBC should be used to insure the bypass is enabled if the disc drive is not installed.

The Enable Bypass signal is active under failing conditions within the drive, on detection of the Loop Port Bypass primitive sequence, or on removal of the drive. In the bypass state the drive continues to receive on the inbound fibre. Enable Bypass may be deactivated by detection of a Loop Port Enable primitive sequence if the drive has completed self-test and a hardware failure is not present.

Failure modes detected by the disc drive that will enable bypass include:

Transmitter/receiver wrap test failure

Loss of receive clock

Loss of transmission clock

Drive interface hardware error

9.5.10Motor start controls

The drive’s motor is started according to the Start_1 and Start_2 signals described in Table 22. The state of these signals can be wired into the backplane socket or driven by logic on the backplane.

Table 22:

Motor start control signals

 

 

 

 

 

Case

Start_2

Start_1

Motor spin function

 

 

 

 

1

Low

Low

Motor spins up at DC power on.

 

 

 

 

2

High

Low

Motor spins up only when SCSI Start command is received.

 

 

 

 

3

Low

High

Motor spins up after a delay of 12 seconds times the modulo 8 value of

 

 

 

the numeric SEL ID of the drive from DC power on.

 

 

 

 

Savvio 15K.1 FC Product Manual, Rev. B

61

Page 69
Image 69
Seagate ST936751FC, ST973451FC manual Active LED Out, Enable port bypass signals, Motor start controls