Tripp Lite APSX2012SW, APSX1012SW Example, Match Battery Amp-Hour Capacity to Your Application

Models: APSX1012SW

1 48
Download 48 pages 27.3 Kb
Page 7
Image 7
3.1.1 Match Battery Amp-Hour Capacity to Your Application

3. Battery

3.1.1 Match Battery Amp-Hour Capacity to Your Application

Select a battery or system of batteries that will provide your Inverter/Charger with proper DC voltage and an adequate amp- hour capacity to power your application. Even though Tripp Lite Inverter/Chargers are highly efficient at DC-to-AC inversion, their rated output capacities are limited by the total amp-hour capacity of connected batteries and the support of your

vehicle’s alternator if the engine is kept running.

Example

STEP 1) Determine Total Wattage Required

Add the wattage ratings of all equipment you will connect to your

Inverter/Charger. Wattage ratings are usually listed in equipment manuals or on nameplates. If your equipment is rated in amps, multiply that number times AC utility voltage to estimate watts.

(Example: a drill requires 2.8 amps. 2.8 amps × 230 volts = 640 watts.)

NOTE: Your Inverter/Charger will operate at higher efficiencies at about 75% - 80% of nameplate rating.

Tools

13mm (1/2”) Drill

Orbital Sander

640W +

220W

=

860W

Appliances and Electronics

 

 

Desktop Computer with

Refrigerator

Table Fan

Large LCD Monitor

540W

+ 150W

+

250W

= 940W

STEP 2) Determine DC Battery Amps Required Divide the total wattage required (from step 1, above)

by the nominal battery voltage to determine the DC amps required.

STEP 3) Estimate Battery Amp-Hours Required

Multiply the DC amps required (from step 2, above) by the number of hours you estimate you will operate your equipment exclusively from battery power before you have to recharge your batteries with utility- or generator-supplied AC power. Compensate for inefficiency by multiplying this number by 1.2. This will give you a rough estimate of how many amp-hours of battery power (from one or several batteries) you should connect to your Inverter/Charger.

NOTE: Battery amp-hour ratings are usually given for a 20-hour discharge rate. Actual amp-hour capacities are less when batteries are discharged at faster rates. For example, batteries discharged in 55 minutes provide only 50% of their listed amp-hour ratings, while batteries discharged in 9 minutes provide as little as 30% of their amp-hour ratings.

940 watts ÷ 12V = 78 DC Amps

78 DC Amps × 5 Hrs. Runtime

× 1.2 Inefficiency Rating = 468 Amp-Hours

STEP 4) Estimate Battery Recharge Required, Given Your Application You must allow your batteries to recharge long enough to replace the charge lost during inverter operation or else you will eventually run down your batteries. To estimate the minimum amount of time you need to recharge your batteries given your application, divide your required battery amp-hours (from step 3, above) by your Inverter/Charger’s rated charging amps (depending on the Switch 6, 7 and 8 ON/OFF settings).

NOTE! For Tripp Lite Inverter/Chargers providing 1000 watts or less of continuous AC power, a full-size battery will normally allow sufficient power for many applications before recharging is necessary. For mobile applications, if a single battery is continuously fed by an alternator at high idle or faster, then recharging from utility or generator power may not be necessary. For Tripp Lite Inverter/Chargers over 1000 watts used in mobile applications, Tripp Lite recommends you use at least two batteries, if possible fed by

a heavy-duty alternator any time the vehicle is running. Tripp Lite Inverter/Chargers will provide adequate power for ordinary usage within limited times without the assistance of utility or generator power. However, when operating extremely heavy electrical loads at their peak in the absence of utility power, you may wish to “assist your batteries” by running an auxiliary generator or vehicle engine, and doing so at faster than normal idling.

468 Amp-Hours ÷ 40 Amps

Inverter/Charger Rating

=11.7 Hours Recharge

7

201110117 93-3054.indb 7

11/9/2011 10:57:56 AM

Page 7
Image 7
Tripp Lite APSX2012SW, APSX1012SW Example, Match Battery Amp-Hour Capacity to Your Application, = 11.7 Hours Recharge