York Y32, Y33, Y34 manual Altitude Correction Factors

Models: Y32 Y34 Y33

1 96
Download 96 pages 54.91 Kb
Page 44
Image 44
TABLE 36: ALTITUDE CORRECTION FACTORS

246653-YTG-E-0108

CFM, STATIC PRESSURE, AND POWER - ALTI- TUDE AND TEMPERATURE CORRECTIONS

The information below should be used to assist in application of product when being applied at altitudes at or exceeding 1000 feet above sea level.

The air flow rates listed in the standard blower performance tables are based on standard air at sea level. As the altitude or temperature increases, the density of air decreases. In

order to use the indoor blower tables for high altitude applica- tions, certain corrections are necessary.

A centrifugal fan is a "constant volume" device. This means that, if the rpm remains constant, the CFM delivered is the same regardless of the density of the air. However, since the air at high altitude is less dense, less static pressure will be generated and less power will be required than a similar application at sea level. Air density correction factors are shown in Table 36 and Figure 21.

TABLE 36: ALTITUDE CORRECTION FACTORS

AIR TEMP

 

 

 

 

ALTITUDE (FEET)

 

 

 

 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

 

40

1.060

1.022

0.986

0.950

0.916

0.882

0.849

0.818

0.788

0.758

0.729

50

1.039

1.002

0.966

0.931

0.898

0.864

0.832

0.802

0.772

0.743

0.715

60

1.019

0.982

0.948

0.913

0.880

0.848

0.816

0.787

0.757

0.729

0.701

70

1.000

0.964

0.930

0.896

0.864

0.832

0.801

0.772

0.743

0.715

0.688

80

0.982

0.947

0.913

0.880

0.848

0.817

0.787

0.758

0.730

0.702

0.676

90

0.964

0.929

0.897

0.864

0.833

0.802

0.772

0.744

0.716

0.689

0.663

100

0.946

0.912

0.880

0.848

0.817

0.787

0.758

0.730

0.703

0.676

0.651

The examples below will assist in determining the airflow per- formance of the product at altitude.

Example 1: What are the corrected CFM, static pressure, and BHP at an elevation of 5,000 ft. if the blower performance data is 6,000 CFM, 1.5 IWC and 4.0 BHP?

Solution: At an elevation of 5,000 ft the indoor blower will still deliver 6,000 CFM if the rpm is unchanged. However, Table 36 must be used to determine the static pressure and BHP. Since no temperature data is given, we will assume an air temperature of 70°F. Table 36 shows the correction factor to be 0.832.

Corrected static pressure = 1.5 x 0.832 = 1.248 IWC

Corrected BHP = 4.0 x 0.832 = 3.328

Example 2: A system, located at 5,000 feet of elevation, is to deliver 6,000 CFM at a static pressure of 1.5". Use the unit

blower tables to select the blower speed and the BHP requirement.

Solution: As in the example above, no temperature informa- tion is given so 70°F is assumed.

The 1.5" static pressure given is at an elevation of 5,000 ft. The first step is to convert this static pressure to equivalent sea level conditions.

Sea level static pressure = 1.5 / .832 = 1.80"

Enter the blower table at 6000 sCFM and static pressure of 1.8". The rpm listed will be the same rpm needed at 5,000 ft.

Suppose that the corresponding BHP listed in the table is 3.2. This value must be corrected for elevation.

BHP at 5,000 ft = 3.2 x .832 = 2.66

44

Johnson Controls Unitary Products

Page 44
Image 44
York Y32, Y33, Y34 manual Altitude Correction Factors