Viewing Conditions
Viewing conditions affect what you can see through your
Transparency
Transparency is the clarity of the atmosphere and is affected by clouds, moisture, andotherairborneparticles. Thickcumulus clouds arecompletelyopaque while cirrus clouds can be thin, allowing the light from the brightest stars through. Hazy skies absorb more light than clear skies making fainter objects harder to see and reducing contrast on brighter objects. Aerosols ejected into the upper atmo- sphere from volcanic eruptions also affect transparency. Ideal conditions are when the night sky is inky black.
Sky Illumination
General sky brightening caused by the Moon, aurorae, natural airglow, and light pollution greatly affect transparency. While not a problem for the Moon, planets, and brighter stars, bright skies reduce the contrast of extended nebulae making them difficult, if not impossible, to see. To maximize your observing, limit
Seeing
Seeing conditions refer to the stability of the atmosphere and directly effects the clarity of star images and the amount of fine detail seen in extended objects like the planets. The air in our atmosphere acts as a lens which bends and distorts incoming light rays. The amount of bending depends on air density. Varying temperature layers have different densities and therefore bend light differently. Light rays from the same object arrive slightly displaced creating an imperfect or smeared image. These atmospheric disturbances vary from
Type 1 seeing conditions are characterized by rapid changes in the image seen through the telescope. Extended objects, like the Moon, appear to shimmer while point sources (i.e., stars) appear double. Type 1 seeing is caused by currents within or very close to the telescope tube. These currents could be caused by a telescope that has not reached thermal equilibrium with the outdoor surroundings, heat waves from people standing near the telescope, or heated dew caps. To avoid the problems associated with Type 1 seeing, allow your telescope approximately 20 to 30 minutes to reach thermal equilibrium.
Celestial Observing • 41