Emerson 60HZ, 480V user manual 2.1.2UPS Input Configuration, 2.1.3Cabling Guidelines

Page 20
2.1.2UPS Input Configuration

Electrical Connections

2.1.2UPS Input Configuration

Figure 3 illustrates the Liebert NX in a split bypass (dual-input) configuration. In this configuration the Static Bypass and the Maintenance Bypass lines are supplied from a separate feed from the Main input. Both sources must be protected externally with properly sized protective devices. By default, the unit ships with internal links installed between the bypass input and main input (Single Input configuration). To wire the unit as a dual input UPS, remove the links and wire the bypass to the input bus bars, then wire the Main input directly to CB1 (see Figure 4).

Figure 3 Single module block diagram—dual input configuration

3-Phase

Internal Maintenance Bypass

3W + Gnd

 

3-Phase

Static Bypass

3W + Gnd

 

AC Input

Rectifier

Inverter

 

 

Converter

 

UPS Cabinet

 

 

2W + Gnd

 

3-Phase

3W + Gnd

AC Output

Battery Cabinet

2.1.3Cabling Guidelines

The following are guidelines only and are superseded by local regulations and codes of practice where applicable. Use wiring rated at 75°C or greater.

1.The ground conductor should be sized in accordance with the input overcurrent protection device data in Table 8. The ground cable connecting the UPS to the main ground system must follow the most direct route possible. Control wiring and power wiring must be run in separate conduit.

Output and input cables must be run in separate conduit.

2.Consider using paralleled smaller cables for heavy currents—this can ease installation.

3.When sizing battery cables, a maximum voltage drop of 4VDC is permissible at the current ratings in UPS terminal. For terminal connection sizing, see Table 8.

4.In most installations, especially parallel multi-module systems, the load equipment is connected to a distribution network of individually protected busbars fed by the UPS output, rather than connected directly to the UPS itself. When this is the case, the UPS output cables can be rated to suit the individual distribution network demands rather than being fully load-rated.

NOTE

If more load is added to the distribution panel, the unit’s cabling must be resized.

5.When laying power cables, do not form coils; this will help avoid increasing formation of electromagnetic interference.

12

Image 20
Contents Liebert NX UPS AC PowerUser Manual–40-200kVA, 480V,60Hz For Business-CriticalContinuityPage TABLE OF CONTENTS 4.0 OPTIONS 9.0 OPERATING INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FIGURES Figure 39 Main component location drawing Liebert NX 480V, CB2, CB3, CB4 configurations . . . . . . . . . TABLES SAVE THESE INSTRUCTIONS IMPORTANT SAFETY INSTRUCTIONSBattery Cabinet Precautions • Remove watches, rings and other metal objects GLOSSARY OF SYMBOLS Risk of electrical shockAC input AC output Requests the user to consult the manual1.0INSTALLATION 1.1External Inspections1.2.1Storing for Delayed Installation 1.2Internal Inspections1.3Preliminary Checks 1.4UPS LocationBattery Location 1.5Considerations in Moving the Liebert NX1.6Mechanical Considerations 1.4.3Special Considerations for Parallel Systems1.6.2Floor Installation 1.6.1Clearances1.6.3Cable Entry System CompositionFront of Units Battery Cabinet LiebertLiebert NX Bypass2.1Power Cabling 2.0ELECTRICAL CONNECTIONS2.1.1Cable Rating Lug Size and Torque Requirements2.1.2UPS Input Configuration 2.1.3Cabling GuidelinesLiebert NX 40-120kVAConnections Liebert NX 160-200kVAConnections2.1.4Cable Connections Figure 4 Input and output busbars2.1.5Safety Ground 2.1.7Cabling Procedure2.1.6Protective Devices UPS Rectifier and Bypass Input SupplyFrequency Converter Mode Common Input ConnectionsDual Input Connections Figure 5 Monitor board U2 2.2.1Monitor Board Features2.2Control Cables 2.3Dry Contacts 2.3.2Maintenance Bypass Cabinet Interface Table 2 Maintenance bypass cabinet interface2.3.1Input Dry Contacts Figure 7 Input dry contacts2.3.3Battery Circuit Breaker Control Interface 2.3.4Output Dry ContactsTable 3 BCB control interface Output dry contact relaysFigure 9 EPO wiring 2.3.5EPO Input—OptionalEPO - NO EPO - NC3.1Introduction 3.2Safety3.0BATTERY INSTALLATION Figure 10 Battery cabinets for Liebert NX 3.3External Battery Cabinet Installation3.3.1Battery Cabinets Figure 11 Battery cabinet—details 3.3.2Connecting the Batteries3.3.3Installation Considerations 3.3.4Connecting the Battery Cabinet to the UPS Figure 12 Battery tray and supports3.4Non-StandardBatteries 3.5BCB Shunt TripThis power must be UPS protected 3.6Alber Monitoring System—Optional4.1.2LBS Cable and Settings 4.1Load Bus Synchronization4.0OPTIONS 4.1.1Performance Requirements4.2.1General 4.2Configuring Parallel System Operation4.2.2Features of Parallel System 480V, 3W Input 480V DC Battery Input Figure 15 Parallel system block diagramLiebert NX UPS 40-200kVA 480V, 3W UOB Output•Battery Mode Operation •Maintenance Bypass Mode Operation4.2.3Operating Principles Redundancy Paralleling 4.2.4Operation Modes Summary4.3Installing Parallel System 4.3.2Cabinet Installation4.3.4Power Cables 4.3.1Conditions for Parallel SystemFor startup procedure, 9.2 - UPS Startup Auxiliary Dry Contact Cables4.3.6Emergency Power Off EPO Figure 20 Connecting EPO push buttonX2:3 X2:4UPS mechanical characteristics 5.0UPS SPECIFICATIONSEnvironmental characteristics 5.4UPS Electrical Characteristics Table 8 UPS terminalTable 9 Rectifier input power 5.4.1Input RectifierUPS terminal continued Table 10 Input voltage window with deratingTable 11 Liebert approved replacement batteries 5.4.2DC Intermediate Circuit5.4.3Inverter Output Table 12 DC intermediate circuit5.4.4 Bypass Input Table 14 Bypass inputLeft Side FrontFront Detail AParallel Board FRONT VIEW LEFT VIEW1239mm 2000mmTOP VIEW Front of UPS BOTTOM VIEW Front of UPSInstallation Drawings DETAIL A 8.83 DETAIL A224mm 609.3 24 872.2 34.3 U3819205 RIGHT SIDE FRONTSECTION A-A TOP VIEWDetail A Top ViewDetail B without BCB Cover Plate49 Battery Cabinet Right-SideViews A D NX 160-200KVAUPS Module Front View A CBB D CDInstallation Drawings 845 33.2 965 38 2000 78.7 FrontTop Right Side Right Side FrontFront RearSystem Input UPS OutputWithout Covers FRONT UPS Output Breakers Ground BusbarSystem Kirk-KeyREAR FRONTDoor Open A B1-B4 FRONT Without Covers LEFT SIDE Without Exterior Panels 965 38 in 2000 78.7 inRIGHT SIDE Without Exterior Panels LEFT SIDE Isometric View7.1General Description 7.0OPERATIONBattery Mode 7.1.1Bypass Supplies7.1.2Operating Modes Normal ModeMaintenance Mode Parallel Redundancy Mode System Expansion8.0OPERATOR CONTROL AND DISPLAY PANEL 8.1.1Display Panel LayoutFigure 45 Overview of control panel Liquid Crystal Display LCD Mimic display LED2Figure 47 Mimic display indicators location Bypass indicatorLoad indicator Inverter indicatorInverter Off button Fault Clear button Figure 48 Location of control buttonsButton cover EPO button Silence On/Off button Inverter On buttonData and settings Figure 49 Buzzer locationFigure 50 Sections of the LCD UPS systemTable 17 Icons for navigation keys 8.8LCD Menus and Data Items Figure 51 Menu treeOperator Control and Display Panel 8.9Language Selection Figure 52 Language selection8.10Current Date and Time Figure 53 Set date and timeCurrent StatusMessages History Log records menu8.12.2Default Screen Figure 56 Default screen8.12Types of LCD Screens 8.12.1Opening DisplayPress any key back to main menu 8.12.3UPS Help Screen8.12.4Screen Saver Window Figure 57 Help screen8.13.4 Battery Capacity Test Confirmation 8.13.5Battery Self-TestAborted, Condition Not Met8.13Pop-UpWindows 8.13.3System Self-TestTable 20 UPS operating modes 9.1Liebert NX Operating Modes9.0OPERATING INSTRUCTIONS 9.2.1Startup Procedure 9.2UPS Startup9.1.1Circuit Breakers Figure 59 Circuit breakers•Close CB5 CB1, CB2, CB3 and CB5 are closed Switch from Normal Mode to Bypass Mode Switch from Bypass Mode to Normal Mode9.4Auto Restart 9.5Emergency Shutdown With EPO9.7Battery Protection 9.8Multi-ModuleSystem Procedures9.7.1Battery Undervoltage Pre-Warning 9.7.2Battery End-of-DischargeEOD Protection3.Close Input breaker CB1 9.9Commissioning a Parallel System 9.10Parallel System Startup10.1.2Power Output 10.1Communication and Other User Terminals10.0OPTIONS 10.1.1Analog Input InterfaceTable 21 Liebert NX communication options 10.1.5Configuring Baud Rates10.1.4Communication and Monitoring Figure 62 Liebert IntelliSlot Web card display Relay Card Table 22 Relay Card pin configurationTable 23 Relay card jumper configuration MultiPort 4 Card Figure 63 MultiPort 4 card pin assignment10.2.1Remote Alarm Monitor Figure 64 Dust filter replacement10.2LBS Mode—LoadBus Synchronization 10.3Replacing Dust Filters11.0SPECIFICATIONS AND TECHNICAL DATA Table 24 Torque specificationsTable 25 Battery torque rating Specifications and Technical DataTable 27 Parallel system current table 11.3Cable size and tightening torques Specifications and Technical Data Table 38 C&D Dynasty battery run times in minutes 11.4Battery Run TimesTable 37 Enersys battery run times in minutes Table 38 C&D Dynasty battery run times in minutes UPS Status Messages APPENDIX A - UPS STATUS MESSAGESTable 39 UPS status messages Table 39 UPS status messages UPS Status MessagesEvent Message Description / Suggested Action if anyTable 39 UPS status messages UPS Status MessagesTable 39 UPS status messages UPS Status MessagesTable 39 UPS status messages UPS Status MessagesUPS Status Messages Page Ensuring The High Availability Of Mission-CriticalData And ApplicationsTechnical Support/ Service reducedcapitalequipment andoperatingcosts
Related manuals
Manual 2 pages 62.47 Kb Manual 108 pages 52.85 Kb

60HZ, 480V specifications

The Emerson 40-120KVA UPS is a high-performing uninterruptible power supply designed to ensure the reliability and continuity of critical operations across various industries. This UPS operates at 480VAC and 60Hz, making it suitable for environments where high-power demands are common.

One of the standout features of this UPS system is its modular design, which allows for easy scalability. Organizations can expand their power capacity as their needs grow, making the Emerson 40-120KVA UPS a future-proof investment. The system operates with high efficiency, minimizing energy consumption and operational costs. This is vital for data centers and industrial applications where energy management is increasingly important.

The Emerson UPS incorporates advanced digital signal processing technology, delivering real-time monitoring and control. This enhances the overall performance and reliability of the system, providing seamless power protection against voltage fluctuations, surges, and interruptions. With a total harmonic distortion of less than 5%, the UPS ensures a clean and stable power output, preserving the integrity of sensitive electronic equipment.

Another noteworthy characteristic of the Emerson 40-120KVA is its redundancy features. The system supports N+1 redundancy, allowing for one extra module to ensure uninterrupted service in case of a failure. This design offers peace of mind for critical applications, ensuring that there is no single point of failure.

User-friendliness is also a significant aspect of the Emerson UPS. The intuitive graphical user interface simplifies monitoring and management, allowing operators to assess system performance and status at a glance. Additionally, remote monitoring capabilities enable real-time tracking of system health and performance from anywhere, providing flexibility and oversight for facility managers.

The Emerson 40-120KVA UPS also meets stringent safety and compliance standards, ensuring reliable operation in demanding environments. Its robust design is suitable for a variety of applications, including information technology, telecommunications, and industrial processes. Overall, the Emerson 40-120KVA UPS stands out as a reliable, efficient, and versatile solution for businesses aiming to safeguard their critical power supply against any disruption.