Emerson 10-30kVA, 208V Battery Manufacturers and Models, Input Rectifier, DC Intermediate Circuit

Page 46

UPS Specifications

6.4.1 Battery Manufacturers and Models

Either of two manufacturers’ batteries will be installed in the NX 10-30 kVA 208V as shipped. Below are the battery makers and the models they supply.

Table 11 Approved batteries

Battery Manufacturer

 

Models Supplied

 

 

 

 

 

 

Enersys Yuasa

NPX-80FR

 

NPX-100FR

NPX-150FR

 

 

 

 

 

C&D Dynasty

UPS12-100MR

 

UPS12-140MR

-

 

 

 

 

 

6.4.2 Input Rectifier

Table 12 Rectifier input power

Rated Power

10kVA

15kVA

 

20kVA

 

30kVA

 

 

 

 

 

 

 

Rated Voltage, VAC

 

 

120/208

 

 

 

 

 

 

Supply

 

3-phase, 4-wire plus ground

 

 

 

 

 

 

 

Input Voltage Tolerance, VAC (without derating)

 

 

166-239

 

 

 

 

 

 

 

 

Frequency, Hz

 

 

50 / 60

 

 

 

 

 

 

 

 

Input Frequency Tolerance %

 

 

±10

 

 

 

 

 

 

Power Factor

 

0.99 at full load

 

 

0.95 at 50% load

 

 

 

 

Harmonic Current

Less than 4% at full rated UPS output load

 

 

 

 

 

 

 

Input Current,1 Nominal, A

28

42

 

56

 

83

Output Current, Nominal, A

28

42

 

56

 

83

 

 

 

 

 

 

 

Notes:

100% Imax <I<125% Imax: 10 min.

 

1. Overload capacity of input current:

 

 

125% Imax <I<150% Imax: 1 min.

 

I>150%: Limits input current immediately

6.4.3 DC Intermediate Circuit

Table 13 DC intermediate circuit

Rated Power

10kVA

15kVA

 

20kVA

30kVA

 

 

 

 

 

 

Number of batteries is 24 jars (12V per jar), or 144 cells (2V per

Recommended number of lead-acid batteries

cell) for VRLA. The unit is shipped with a nominal voltage of

 

288VDC.

 

 

 

 

Recommended float charge voltage

 

2.27VDC*

 

 

 

 

 

 

Recommended boost charge voltage

 

 

2.3VDC*

 

 

 

 

 

Recommended end of discharge voltage

 

1.65-1.8 VDC

 

 

 

 

 

 

 

Maximum recharge battery current, A

7.5

7.5

 

15

15

 

 

 

 

 

 

Maximum boost charge duration, min.*

 

 

1440

 

 

 

 

 

Boost-float threshold current, A*

 

0.1 C default

 

 

 

 

 

 

Temperature voltage compensation, mV/°C*

 

 

3

 

 

 

 

 

 

Ripple voltage superimposed %

 

 

1

 

 

 

 

 

 

 

* Set by configuration software and based on usage of VLRA batteries.

40

Image 46
Contents Liebert NX UPS Page Table of Contents UPS Specifications Maintenance Bypass CabinetOptions Figures Tables Important Safety Instructions Battery Cabinet Precautions Glossary of Symbols External Inspections Internal InspectionsPreliminary Checks UPS LocationSpecial Considerations for 1+N Systems Considerations in Moving the NXMechanical Considerations Final PositionCable Entry Floor InstallationClearances 10-30kVA UPSLiebert Maintenance Bypass CabinetBattery Optional CabinetsCable Rating Power CablingLug Size and Torque Requirements UPS Input Configuration Cabling GuidelinesCable Connections BussmannUPS Rectifier and Bypass Input Supply Safety GroundProtective Devices System OutputCommon Input Connections Cabling ProcedureOutput System Connections-Ensure Correct Phase Rotation Dual Input ConnectionsMonitor Board Features Internal UPS Battery ConnectionsControl Cables Dry Contacts Input Dry ContactsBCB Box Interface Maintenance Bypass Cabinet InterfaceMaintenance bypass cabinet interface BCB box interfaceOutput dry contact relays Output Dry ContactsEPO Input-Optional Firmware Before M200 EPO input contact relaysFirmware M200 or Later Introduction SafetyUPS Batteries Connecting the Batteries External Battery Cabinet InstallationMatching Battery Cabinets Removable retainer Tray handle Insulated post for cablingBattery tray support Service shelf Top cable entry Battery trays BCB plate and BCBTop cable entry Batteries BCB plate Installation Considerations Front door note notched Battery tray supports attachTo interior surface of NX Ends of supportsConnecting the Battery Cabinet to the UPS Non-Standard BatteriesBypass Switch Normal UPS ModeCable Installation Bypass ModeMaintenance Mode Locating the CabinetPower Cable Installation Input/Output WiringMaintenance bypass control wire location Bolting Cabinets Together Line up cabinets so that mounting holes are alignedPerformance Requirements DBS Cable and SettingsLoad Bus Synchronization LBS CableFeatures of Parallel System Configuring Parallel System OperationGeneral Installing Parallel System Parallel Control Cables Parallel System Control Cables Power CablesInterconnecting Auxiliary Dry Contact CablesInput Distribution Normally Open EPO Normally Closed EPODimensions Battery Circuit Breaker BoxAvailable battery circuit breaker boxes Circuit BreakerBottom View Front ViewMidpoint Busbar Detail DPN U3813078 Rev. N Mechanical characteristics UPS Mechanical CharacteristicsEnvironmental characteristics Conformity and StandardsUPS Electrical Characteristics UPS terminalInput Rectifier Battery Manufacturers and ModelsDC Intermediate Circuit Bypass Input Bypass input Inverter OutputInverter output Time LoadInstallation Drawings Dimensions -top and bottom views Main components-typical unitCable connections Battery 417mm 186mm 687mm Location of internal batteriesW505 to W504 W508 to W509 W501 3pcs W500 18pcs W506 to W507 W510 to W511 W502 to W503W504 to W505 W511 to W510 W507 to W506 W509 to W508 W503 to W502Refer to for key to interconnection Liebert -supplied interconnect wiringRun From Conductors Maintenance Bypass interconnection Run From Conductors Cabinet Type Liebert-supplied interconnect wiringA00, BR0 Isolated Ground Distribution CabinetDistribution Cabinet Load AC Connection Neutral Ground Interconnect wiring-1+N Type a connection to NX Interconnect wiring-1+N Type A1 connection to NX Interconnect wiring-1+N Type B connection to NX Utility AC Source UPS #1-UPS #4 Module AC InputInterconnect wiring-1+N Type B1 connection to NX Ph a ,B, C UPS Input Interconnect wiring-1+N Type C connection to NXPh A, B, C-system Input Ph a ,B, C LoadInterconnect wiring-1+N Type C1 connection to NX + N Cabinet Side View + N Parallel CabinetInterconnect wiring-1+N Type D connection to NX Lineup detail-1+N Type D connection to NXUPS Initial Torque Annual Torque Battery In-lb N-m Torque specificationsBattery torque rating Lug Size and Torque RequirementsCurrent CB Size a Maintenance bypass cabinet electrical data single inputCurrent Rating a OCP CB Size a Maintenance bypass cabinet electrical data dual input Current Rating a CB Size aMulti-module bypass cabinet electrical data 300A 200ASR0, W00 G01, GR1 E00, FR0TR0 208 104 125 250 400 MR1 UR0, Y00208 280 400 222 300 210 250 167 225 140 175 111 150 Maintenance bypass cabinet lug sizes Maintenance Bypass Cabinet weights Battery cabinet physical characteristicsMaintenance Bypass Cabinet Style, lb. kg Rating Cable Lengths Floor to Connection Point Inside UPS Maintenance bypass cabinet dimensionsMulti-module paralleling cabinet dimensions Distance to connection points on the NX UPSSpecifications and Technical Data Specifications and Technical Data Page Ti n Ne tIti That
Related manuals
Manual 80 pages 58.87 Kb Manual 48 pages 54.46 Kb

10-30kVA, 208V specifications

The Emerson 10-30 kVA, 208V uninterruptible power supply (UPS) solution is a robust system designed to provide reliable power protection for critical applications in commercial and industrial settings. This UPS is ideal for safeguarding IT equipment, communication systems, and other sensitive electronics against power disturbances and interruptions.

One of the standout features of the Emerson 10-30 kVA UPS is its modular design, allowing for flexibility and scalability. This means that as the power needs of a facility grow, the UPS can be easily expanded without requiring a complete system overhaul. This modularity contributes to a more efficient use of resources and minimizes operational costs.

The UPS also incorporates advanced technologies such as double-conversion online architecture, which provides the highest level of power quality. This technology ensures that the output power is consistently clean and stable, effectively eliminating harmful voltage fluctuations and frequency variations. Consequently, connected load receives a pure sine wave output, preventing potential damage or operational issues with sensitive equipment.

Another key feature is the high efficiency rating of the Emerson UPS, which exceeds 95 percent in typical operating conditions. This high efficiency translates to reduced energy costs and a smaller carbon footprint, aligning with modern sustainability goals. The cooling system is designed to be efficient as well, ensuring optimal performance while maintaining a compact footprint.

The user-friendly interface enhances operability, featuring an intuitive LCD display that allows for easy monitoring of critical power parameters. Users can access real-time data related to battery health, load levels, and operational status, which aids in effective management of the power supply.

Battery management is another critical aspect of the Emerson UPS. It employs advanced battery management technologies to ensure optimal battery life and performance. Features such as intelligent battery testing and monitoring help predict potential battery failures before they occur, allowing for proactive maintenance and minimized downtime.

In summary, the Emerson 10-30 kVA, 208V UPS offers a combination of modularity, high efficiency, advanced technologies, and effective power management features that cater to the demanding needs of critical applications. With its reliable performance and user-friendly operation, this UPS solution is an excellent choice for organizations looking to protect their valuable equipment from power disturbances.