Emerson 10-30kVA, 208V External Battery Cabinet Installation, Matching Battery Cabinets

Page 26

Battery Installation

3.4External Battery Cabinet Installation

3.4.1Matching Battery Cabinets

Two sizes of optional battery cabinets are available. Refer to Figures 13 and 14. The same model bat- tery cabinet may be installed in parallel in multiple cabinet strings for additional capacity. Battery run time depends on the cabinet model, the number of cabinets and the load on the UPS.

Handling—The battery cabinet has casters to facilitate movement over short distances. The bottoms of the battery cabinets are reinforced to permit movement by forklift over longer distances.

Inspection—Remove all panels and visually inspect the batteries, bus connections, and cabinet for any damage. Exercise caution; voltage is present within the battery cabinet even before installation. If there are signs of damage, do not proceed. Call Liebert Global Services at 1-800-542-2378.

Storage—The batteries can be stored for up to six months without appreciable deterioration. If plan- ning to store a battery cabinet for longer than six months or at temperatures higher than 77°F (25°C), contact Liebert Global Services for recommended precautions.

The following notes, in conjunction with the diagrams (Figure 13 through 12), illustrate the broad principles to be followed when fitting and connecting the majority of battery cabinet installations.

! CAUTION

Any battery system should be installed by qualified personnel.

When installing an external battery cabinet that is NOT a Liebert NX battery cabinet, the customer must provide overcurrent protection. See Table 10 for sizing of protection devices.

NOTE

When using an external battery supply that is not provided with the UPS, please make reference to the battery manufacturer’s installation manual for battery installation and maintenance instructions, available on the manufacturer’s Web site. When replacing batteries, Liebert recommends that the batteries in external cabinets be the same type used internally in the NX. See Table 11 for a list of batteries that are approved for use with this product.

3.4.2Connecting the Batteries

If the NX battery cabinets are installed on a raised floor, the battery power cables and circuit breaker control cables may be routed to the UPS cabinet via the floor of the cabinet (bottom entry).

If the NX battery cabinets are installed adjacent to one another on a solid floor, these cables may be passed between the cabinets through lifting slots in the lower sides of the cabinets.

Intertray connections must be made before the battery cabinet may be used.

Figure 12 Battery cabinet—details

Removable retainer

Tray handle

Insulated post for cabling

20

Image 26
Contents Liebert NX UPS Page Table of Contents Options Maintenance Bypass CabinetUPS Specifications Figures Tables Important Safety Instructions Battery Cabinet Precautions Glossary of Symbols External Inspections Internal InspectionsPreliminary Checks UPS LocationSpecial Considerations for 1+N Systems Considerations in Moving the NXMechanical Considerations Final PositionCable Entry Floor InstallationClearances 10-30kVA UPSLiebert Maintenance Bypass CabinetBattery Optional CabinetsLug Size and Torque Requirements Power CablingCable Rating UPS Input Configuration Cabling GuidelinesCable Connections BussmannUPS Rectifier and Bypass Input Supply Safety GroundProtective Devices System OutputCommon Input Connections Cabling ProcedureOutput System Connections-Ensure Correct Phase Rotation Dual Input ConnectionsControl Cables Internal UPS Battery ConnectionsMonitor Board Features Dry Contacts Input Dry ContactsBCB Box Interface Maintenance Bypass Cabinet InterfaceMaintenance bypass cabinet interface BCB box interfaceOutput dry contact relays Output Dry ContactsEPO Input-Optional Firmware Before M200 EPO input contact relaysFirmware M200 or Later UPS Batteries SafetyIntroduction Connecting the Batteries External Battery Cabinet InstallationMatching Battery Cabinets Removable retainer Tray handle Insulated post for cablingTop cable entry Batteries BCB plate Top cable entry Battery trays BCB plate and BCBBattery tray support Service shelf Installation Considerations Front door note notched Battery tray supports attachTo interior surface of NX Ends of supportsConnecting the Battery Cabinet to the UPS Non-Standard BatteriesBypass Switch Normal UPS ModeCable Installation Bypass ModeMaintenance Mode Locating the CabinetPower Cable Installation Input/Output WiringMaintenance bypass control wire location Bolting Cabinets Together Line up cabinets so that mounting holes are alignedPerformance Requirements DBS Cable and SettingsLoad Bus Synchronization LBS CableGeneral Configuring Parallel System OperationFeatures of Parallel System Installing Parallel System Parallel Control Cables Parallel System Control Cables Power CablesInterconnecting Auxiliary Dry Contact CablesInput Distribution Normally Open EPO Normally Closed EPODimensions Battery Circuit Breaker BoxAvailable battery circuit breaker boxes Circuit BreakerMidpoint Busbar Detail DPN U3813078 Rev. N Front ViewBottom View Mechanical characteristics UPS Mechanical CharacteristicsEnvironmental characteristics Conformity and StandardsUPS Electrical Characteristics UPS terminalDC Intermediate Circuit Battery Manufacturers and ModelsInput Rectifier Bypass Input Bypass input Inverter OutputInverter output Time LoadInstallation Drawings Dimensions -top and bottom views Main components-typical unitCable connections Battery 417mm 186mm 687mm Location of internal batteriesW505 to W504 W508 to W509 W501 3pcs W500 18pcs W506 to W507 W510 to W511 W502 to W503W504 to W505 W511 to W510 W507 to W506 W509 to W508 W503 to W502Run From Conductors Liebert -supplied interconnect wiringRefer to for key to interconnection Maintenance Bypass interconnection A00, BR0 Liebert-supplied interconnect wiringRun From Conductors Cabinet Type Distribution Cabinet Load AC Connection Neutral Ground Distribution CabinetIsolated Ground Interconnect wiring-1+N Type a connection to NX Interconnect wiring-1+N Type A1 connection to NX Interconnect wiring-1+N Type B connection to NX Utility AC Source UPS #1-UPS #4 Module AC InputInterconnect wiring-1+N Type B1 connection to NX Ph a ,B, C UPS Input Interconnect wiring-1+N Type C connection to NXPh A, B, C-system Input Ph a ,B, C LoadInterconnect wiring-1+N Type C1 connection to NX + N Cabinet Side View + N Parallel CabinetInterconnect wiring-1+N Type D connection to NX Lineup detail-1+N Type D connection to NXUPS Initial Torque Annual Torque Battery In-lb N-m Torque specificationsBattery torque rating Lug Size and Torque RequirementsCurrent Rating a OCP CB Size a Maintenance bypass cabinet electrical data single inputCurrent CB Size a Maintenance bypass cabinet electrical data dual input Current Rating a CB Size aMulti-module bypass cabinet electrical data SR0, W00 200A300A TR0 E00, FR0G01, GR1 208 104 125 250 400 MR1 UR0, Y00208 280 400 222 300 210 250 167 225 140 175 111 150 Maintenance bypass cabinet lug sizes Maintenance Bypass Cabinet Style, lb. kg Rating Battery cabinet physical characteristicsMaintenance Bypass Cabinet weights Cable Lengths Floor to Connection Point Inside UPS Maintenance bypass cabinet dimensionsMulti-module paralleling cabinet dimensions Distance to connection points on the NX UPSSpecifications and Technical Data Specifications and Technical Data Page Ti n Ne tIti That
Related manuals
Manual 80 pages 58.87 Kb Manual 48 pages 54.46 Kb

10-30kVA, 208V specifications

The Emerson 10-30 kVA, 208V uninterruptible power supply (UPS) solution is a robust system designed to provide reliable power protection for critical applications in commercial and industrial settings. This UPS is ideal for safeguarding IT equipment, communication systems, and other sensitive electronics against power disturbances and interruptions.

One of the standout features of the Emerson 10-30 kVA UPS is its modular design, allowing for flexibility and scalability. This means that as the power needs of a facility grow, the UPS can be easily expanded without requiring a complete system overhaul. This modularity contributes to a more efficient use of resources and minimizes operational costs.

The UPS also incorporates advanced technologies such as double-conversion online architecture, which provides the highest level of power quality. This technology ensures that the output power is consistently clean and stable, effectively eliminating harmful voltage fluctuations and frequency variations. Consequently, connected load receives a pure sine wave output, preventing potential damage or operational issues with sensitive equipment.

Another key feature is the high efficiency rating of the Emerson UPS, which exceeds 95 percent in typical operating conditions. This high efficiency translates to reduced energy costs and a smaller carbon footprint, aligning with modern sustainability goals. The cooling system is designed to be efficient as well, ensuring optimal performance while maintaining a compact footprint.

The user-friendly interface enhances operability, featuring an intuitive LCD display that allows for easy monitoring of critical power parameters. Users can access real-time data related to battery health, load levels, and operational status, which aids in effective management of the power supply.

Battery management is another critical aspect of the Emerson UPS. It employs advanced battery management technologies to ensure optimal battery life and performance. Features such as intelligent battery testing and monitoring help predict potential battery failures before they occur, allowing for proactive maintenance and minimized downtime.

In summary, the Emerson 10-30 kVA, 208V UPS offers a combination of modularity, high efficiency, advanced technologies, and effective power management features that cater to the demanding needs of critical applications. With its reliable performance and user-friendly operation, this UPS solution is an excellent choice for organizations looking to protect their valuable equipment from power disturbances.