Emerson 10-30kVA, 208V W501 3pcs W500 18pcs W506 to W507 W510 to W511 W502 to W503, W503 to W502

Page 52

Installation Drawings

Figure 33 Battery connections

DYNASTY BATTERY

TOP LAYER

MIDDLE LAYER

W501 3pcs

+

-

+

-

W500 18pcs

+

-

+

-

+

-

+

-

W506 to W507

+

-

+

-

+

-

+

-

+

-

+

-

+ -

W510 to W511

+

-

+

-

 

W502 to W503

W503 to W502

 

+-

W504 to W505

W511 to W510

W507 to W506

W509 to W508

BOTTOM LAYER

+

-

+

-

+-

+-

+

N

-

CON4

+

-

+

-

+

-

+

-

W505 to W504

W508 to W509

46

Image 52
Contents Liebert NX UPS Page Table of Contents UPS Specifications Maintenance Bypass CabinetOptions Figures Tables Important Safety Instructions Battery Cabinet Precautions Glossary of Symbols External Inspections Internal InspectionsPreliminary Checks UPS LocationConsiderations in Moving the NX Mechanical ConsiderationsSpecial Considerations for 1+N Systems Final PositionFloor Installation ClearancesCable Entry 10-30kVA UPSMaintenance Bypass Cabinet BatteryLiebert Optional CabinetsCable Rating Power CablingLug Size and Torque Requirements UPS Input Configuration Cabling GuidelinesCable Connections BussmannSafety Ground Protective DevicesUPS Rectifier and Bypass Input Supply System OutputCabling Procedure Output System Connections-Ensure Correct Phase RotationCommon Input Connections Dual Input ConnectionsMonitor Board Features Internal UPS Battery ConnectionsControl Cables Dry Contacts Input Dry ContactsMaintenance Bypass Cabinet Interface Maintenance bypass cabinet interfaceBCB Box Interface BCB box interfaceOutput Dry Contacts EPO Input-Optional Firmware Before M200Output dry contact relays EPO input contact relaysFirmware M200 or Later Introduction SafetyUPS Batteries External Battery Cabinet Installation Matching Battery CabinetsConnecting the Batteries Removable retainer Tray handle Insulated post for cablingBattery tray support Service shelf Top cable entry Battery trays BCB plate and BCBTop cable entry Batteries BCB plate Installation Considerations Battery tray supports attach To interior surface of NXFront door note notched Ends of supportsConnecting the Battery Cabinet to the UPS Non-Standard BatteriesBypass Switch Normal UPS ModeBypass Mode Maintenance ModeCable Installation Locating the CabinetPower Cable Installation Input/Output WiringMaintenance bypass control wire location Bolting Cabinets Together Line up cabinets so that mounting holes are alignedDBS Cable and Settings Load Bus SynchronizationPerformance Requirements LBS CableFeatures of Parallel System Configuring Parallel System OperationGeneral Installing Parallel System Power Cables InterconnectingParallel Control Cables Parallel System Control Cables Auxiliary Dry Contact CablesInput Distribution Normally Open EPO Normally Closed EPOBattery Circuit Breaker Box Available battery circuit breaker boxesDimensions Circuit BreakerBottom View Front ViewMidpoint Busbar Detail DPN U3813078 Rev. N UPS Mechanical Characteristics Environmental characteristicsMechanical characteristics Conformity and StandardsUPS Electrical Characteristics UPS terminalInput Rectifier Battery Manufacturers and ModelsDC Intermediate Circuit Inverter Output Inverter outputBypass Input Bypass input Time LoadInstallation Drawings Dimensions -top and bottom views Main components-typical unitCable connections Battery 417mm 186mm 687mm Location of internal batteriesW501 3pcs W500 18pcs W506 to W507 W510 to W511 W502 to W503 W504 to W505 W511 to W510 W507 to W506 W509 to W508W505 to W504 W508 to W509 W503 to W502Refer to for key to interconnection Liebert -supplied interconnect wiringRun From Conductors Maintenance Bypass interconnection Run From Conductors Cabinet Type Liebert-supplied interconnect wiringA00, BR0 Isolated Ground Distribution CabinetDistribution Cabinet Load AC Connection Neutral Ground Interconnect wiring-1+N Type a connection to NX Interconnect wiring-1+N Type A1 connection to NX Interconnect wiring-1+N Type B connection to NX Utility AC Source UPS #1-UPS #4 Module AC InputInterconnect wiring-1+N Type B1 connection to NX Interconnect wiring-1+N Type C connection to NX Ph A, B, C-system InputPh a ,B, C UPS Input Ph a ,B, C LoadInterconnect wiring-1+N Type C1 connection to NX + N Cabinet Side View + N Parallel CabinetInterconnect wiring-1+N Type D connection to NX Lineup detail-1+N Type D connection to NXUPS Torque specifications Battery torque ratingInitial Torque Annual Torque Battery In-lb N-m Lug Size and Torque RequirementsCurrent CB Size a Maintenance bypass cabinet electrical data single inputCurrent Rating a OCP CB Size a Maintenance bypass cabinet electrical data dual input Current Rating a CB Size aMulti-module bypass cabinet electrical data 300A 200ASR0, W00 G01, GR1 E00, FR0TR0 208 104 125 250 400 MR1 UR0, Y00208 280 400 222 300 210 250 167 225 140 175 111 150 Maintenance bypass cabinet lug sizes Maintenance Bypass Cabinet weights Battery cabinet physical characteristicsMaintenance Bypass Cabinet Style, lb. kg Rating Maintenance bypass cabinet dimensions Multi-module paralleling cabinet dimensionsCable Lengths Floor to Connection Point Inside UPS Distance to connection points on the NX UPSSpecifications and Technical Data Specifications and Technical Data Page Ne t ItiTi n That
Related manuals
Manual 80 pages 58.87 Kb Manual 48 pages 54.46 Kb

10-30kVA, 208V specifications

The Emerson 10-30 kVA, 208V uninterruptible power supply (UPS) solution is a robust system designed to provide reliable power protection for critical applications in commercial and industrial settings. This UPS is ideal for safeguarding IT equipment, communication systems, and other sensitive electronics against power disturbances and interruptions.

One of the standout features of the Emerson 10-30 kVA UPS is its modular design, allowing for flexibility and scalability. This means that as the power needs of a facility grow, the UPS can be easily expanded without requiring a complete system overhaul. This modularity contributes to a more efficient use of resources and minimizes operational costs.

The UPS also incorporates advanced technologies such as double-conversion online architecture, which provides the highest level of power quality. This technology ensures that the output power is consistently clean and stable, effectively eliminating harmful voltage fluctuations and frequency variations. Consequently, connected load receives a pure sine wave output, preventing potential damage or operational issues with sensitive equipment.

Another key feature is the high efficiency rating of the Emerson UPS, which exceeds 95 percent in typical operating conditions. This high efficiency translates to reduced energy costs and a smaller carbon footprint, aligning with modern sustainability goals. The cooling system is designed to be efficient as well, ensuring optimal performance while maintaining a compact footprint.

The user-friendly interface enhances operability, featuring an intuitive LCD display that allows for easy monitoring of critical power parameters. Users can access real-time data related to battery health, load levels, and operational status, which aids in effective management of the power supply.

Battery management is another critical aspect of the Emerson UPS. It employs advanced battery management technologies to ensure optimal battery life and performance. Features such as intelligent battery testing and monitoring help predict potential battery failures before they occur, allowing for proactive maintenance and minimized downtime.

In summary, the Emerson 10-30 kVA, 208V UPS offers a combination of modularity, high efficiency, advanced technologies, and effective power management features that cater to the demanding needs of critical applications. With its reliable performance and user-friendly operation, this UPS solution is an excellent choice for organizations looking to protect their valuable equipment from power disturbances.