Emerson 208V, 10-30kVA Cabling Procedure, Common Input Connections, Dual Input Connections

Page 19

Electrical Connections

2.1.7 Cabling Procedure

! CAUTION

The operations described in this section must be performed by authorized electricians or qualified technical personnel. If you have any difficulties, contact your local Liebert representative or Liebert Global Services.

NOTE

Hydraulic pressure pliers, combinative tools and piston ring pliers should be used to connect AC wiring.

Once the equipment has been positioned and secured for operation, and the battery and ground col- lars have been connected (see 2.1.4 - Cable Connections), connect the power cables as described below. (Study the reference drawing in 7.0 - Installation Drawings.)

1.Verify that all incoming high and low voltage power circuits are de-energized and locked out or tagged out before installing cables or making any electrical connections.

2.Remove the left side panel to gain easier access to the connections busbars.

3.Connect the safety ground and any easier bonding ground bus cables to the copper ground busbar located on the bottom of the equipment below the power connections. All cabinets in the UPS system must be connected to the user’s ground connection.

NOTE

The grounding and neutral bonding arrangement must comply with the National Electrical Code and all applicable local codes.

4. Identify and make power connections with incoming cables according to Steps 5 through 11.

Common Input Connections

5.For common bypass and rectifier inputs, connect the AC input supply cables between the power distribution panel and the UPS input busbars (A-B-C terminals) and tighten the connections to 44 lb-in. (5 N-m) using the M6 bolt provided.

6.The input neutral cable must be connected to the input neutral busbar (N). See Figure 5.

Dual Input Connections

7.For bypass connect the AC input supply cables between the power distribution panel and the UPS input busbars (A-B-C terminals) and tighten the connections to 44 lb-in. (5 N-m) using the M6 bolt provided.

8.For Rectifier Input connect AC input supply cables between the power distribution panel and the UPS input circuit breaker (A-B-C terminals)

9.The bypass and rectifier input neutral cables must be connected to the input neutral busbar (N). See Figure 5.

NOTE

Both the rectifier and bypass feeds MUST come from the same utility source, except if the UPS system includes either a configuration F or P external maintenance bypass cabinet.

Output System Connections—Ensure Correct Phase Rotation

10. Connect the system output cables between the UPS output busbars (A-B-C N terminals) and the critical load and tighten the connections to 44 lb-in. (5 N-m) (M6 bolt).

! WARNING

If the load equipment will not be ready to accept power on the arrival of the commissioning engineer, then ensure that the system output cables are safely isolated.

13

Image 19
Contents Liebert NX UPS Page Table of Contents UPS Specifications Maintenance Bypass CabinetOptions Figures Tables Important Safety Instructions Battery Cabinet Precautions Glossary of Symbols Internal Inspections External InspectionsUPS Location Preliminary ChecksFinal Position Considerations in Moving the NXMechanical Considerations Special Considerations for 1+N Systems10-30kVA UPS Floor InstallationClearances Cable EntryOptional Cabinets Maintenance Bypass CabinetBattery LiebertCable Rating Power CablingLug Size and Torque Requirements Cabling Guidelines UPS Input ConfigurationBussmann Cable ConnectionsSystem Output Safety GroundProtective Devices UPS Rectifier and Bypass Input SupplyDual Input Connections Cabling ProcedureOutput System Connections-Ensure Correct Phase Rotation Common Input ConnectionsMonitor Board Features Internal UPS Battery ConnectionsControl Cables Input Dry Contacts Dry ContactsBCB box interface Maintenance Bypass Cabinet InterfaceMaintenance bypass cabinet interface BCB Box InterfaceEPO input contact relays Output Dry ContactsEPO Input-Optional Firmware Before M200 Output dry contact relaysFirmware M200 or Later Introduction SafetyUPS Batteries Removable retainer Tray handle Insulated post for cabling External Battery Cabinet InstallationMatching Battery Cabinets Connecting the BatteriesBattery tray support Service shelf Top cable entry Battery trays BCB plate and BCBTop cable entry Batteries BCB plate Installation Considerations Ends of supports Battery tray supports attachTo interior surface of NX Front door note notchedNon-Standard Batteries Connecting the Battery Cabinet to the UPSNormal UPS Mode Bypass SwitchLocating the Cabinet Bypass ModeMaintenance Mode Cable InstallationInput/Output Wiring Power Cable InstallationMaintenance bypass control wire location Line up cabinets so that mounting holes are aligned Bolting Cabinets TogetherLBS Cable DBS Cable and SettingsLoad Bus Synchronization Performance RequirementsFeatures of Parallel System Configuring Parallel System OperationGeneral Installing Parallel System Auxiliary Dry Contact Cables Power CablesInterconnecting Parallel Control Cables Parallel System Control CablesInput Distribution Normally Closed EPO Normally Open EPOCircuit Breaker Battery Circuit Breaker BoxAvailable battery circuit breaker boxes DimensionsBottom View Front ViewMidpoint Busbar Detail DPN U3813078 Rev. N Conformity and Standards UPS Mechanical CharacteristicsEnvironmental characteristics Mechanical characteristicsUPS terminal UPS Electrical CharacteristicsInput Rectifier Battery Manufacturers and ModelsDC Intermediate Circuit Time Load Inverter OutputInverter output Bypass Input Bypass inputInstallation Drawings Main components-typical unit Dimensions -top and bottom viewsCable connections Location of internal batteries Battery 417mm 186mm 687mmW503 to W502 W501 3pcs W500 18pcs W506 to W507 W510 to W511 W502 to W503W504 to W505 W511 to W510 W507 to W506 W509 to W508 W505 to W504 W508 to W509Refer to for key to interconnection Liebert -supplied interconnect wiringRun From Conductors Maintenance Bypass interconnection Run From Conductors Cabinet Type Liebert-supplied interconnect wiringA00, BR0 Isolated Ground Distribution CabinetDistribution Cabinet Load AC Connection Neutral Ground Interconnect wiring-1+N Type a connection to NX Interconnect wiring-1+N Type A1 connection to NX Utility AC Source UPS #1-UPS #4 Module AC Input Interconnect wiring-1+N Type B connection to NXInterconnect wiring-1+N Type B1 connection to NX Ph a ,B, C Load Interconnect wiring-1+N Type C connection to NXPh A, B, C-system Input Ph a ,B, C UPS Input+ N Cabinet Side View + N Parallel Cabinet Interconnect wiring-1+N Type C1 connection to NXLineup detail-1+N Type D connection to NX Interconnect wiring-1+N Type D connection to NXUPS Lug Size and Torque Requirements Torque specificationsBattery torque rating Initial Torque Annual Torque Battery In-lb N-mCurrent CB Size a Maintenance bypass cabinet electrical data single inputCurrent Rating a OCP CB Size a Current Rating a CB Size a Maintenance bypass cabinet electrical data dual inputMulti-module bypass cabinet electrical data 300A 200ASR0, W00 G01, GR1 E00, FR0TR0 208 104 125 250 400 UR0, Y00 MR1208 280 400 222 300 210 250 167 225 140 175 111 150 Maintenance bypass cabinet lug sizes Maintenance Bypass Cabinet weights Battery cabinet physical characteristicsMaintenance Bypass Cabinet Style, lb. kg Rating Distance to connection points on the NX UPS Maintenance bypass cabinet dimensionsMulti-module paralleling cabinet dimensions Cable Lengths Floor to Connection Point Inside UPSSpecifications and Technical Data Specifications and Technical Data Page That Ne tIti Ti n
Related manuals
Manual 80 pages 58.87 Kb Manual 48 pages 54.46 Kb

10-30kVA, 208V specifications

The Emerson 10-30 kVA, 208V uninterruptible power supply (UPS) solution is a robust system designed to provide reliable power protection for critical applications in commercial and industrial settings. This UPS is ideal for safeguarding IT equipment, communication systems, and other sensitive electronics against power disturbances and interruptions.

One of the standout features of the Emerson 10-30 kVA UPS is its modular design, allowing for flexibility and scalability. This means that as the power needs of a facility grow, the UPS can be easily expanded without requiring a complete system overhaul. This modularity contributes to a more efficient use of resources and minimizes operational costs.

The UPS also incorporates advanced technologies such as double-conversion online architecture, which provides the highest level of power quality. This technology ensures that the output power is consistently clean and stable, effectively eliminating harmful voltage fluctuations and frequency variations. Consequently, connected load receives a pure sine wave output, preventing potential damage or operational issues with sensitive equipment.

Another key feature is the high efficiency rating of the Emerson UPS, which exceeds 95 percent in typical operating conditions. This high efficiency translates to reduced energy costs and a smaller carbon footprint, aligning with modern sustainability goals. The cooling system is designed to be efficient as well, ensuring optimal performance while maintaining a compact footprint.

The user-friendly interface enhances operability, featuring an intuitive LCD display that allows for easy monitoring of critical power parameters. Users can access real-time data related to battery health, load levels, and operational status, which aids in effective management of the power supply.

Battery management is another critical aspect of the Emerson UPS. It employs advanced battery management technologies to ensure optimal battery life and performance. Features such as intelligent battery testing and monitoring help predict potential battery failures before they occur, allowing for proactive maintenance and minimized downtime.

In summary, the Emerson 10-30 kVA, 208V UPS offers a combination of modularity, high efficiency, advanced technologies, and effective power management features that cater to the demanding needs of critical applications. With its reliable performance and user-friendly operation, this UPS solution is an excellent choice for organizations looking to protect their valuable equipment from power disturbances.