Diamond Systems PR-Z32-EA-ST Single-ended / Differential Inputs, Unipolar / Bipolar Inputs

Page 46

Single-ended / Differential Inputs

Prometheus can accept both single-ended and differential inputs. A single-endedinput uses 2 wires, input and ground. The measured input voltage is the difference between these two wires. A differential input uses 3 wires: input +, input -, and ground. The measured input voltage is the difference between the + and - inputs.

Differential inputs are frequently used when the grounds of the input device and the measurement device (Prometheus) are at different voltages, or when a low-level signal is being measured that has its own ground wire. A differential input also has higher noise immunity than a single-ended input, since most noise affects both + and – input wires equally, so the noise will be canceled out in the measurement. The disadvantage of differential inputs is that only half as many are available, since two input pins are required to produce a single differential input. Prometheus can be configured for either 16 single-ended inputs or 8 differential inputs.

If you have a combination of single-ended and differential input signals, select differential mode. Then to measure the single-ended signals, connect the signal to the + input and connect analog ground to the - input.

WARNING: The maximum range of voltages that can be applied to an analog input on Prometheus without damage is ±35V. If you connect the analog inputs on Prometheus to a circuit whose ground potential plus maximum signal voltage exceeds ±35V, the analog input circuit may be damaged. Check the ground difference between the input source and Prometheus before connecting analog input signals.

Unipolar / Bipolar Inputs

The analog inputs can be configured for can be configured for unipolar (positive input voltages only) or bipolar (both negative and positive input voltages). For unipolar inputs, install a jumper as shown. For bipolar inputs, leave the jumper out.

Analog Output Configuration

The 4 analog outputs can also be configured for unipolar (positive voltages only) or bipolar (both negative and positive output voltages). In unipolar mode, the outputs range between 0-10V. In bipolar mode, the outputs range between ±10V.

When the board powers up or is reset, the analog outputs are also reset. The D/A reset method is selected with a jumper on J13. If the jumper is in, the outputs will reset to the bottom of their range (called zero-scale). If the jumper is out, the outputs will reset to the middle of their range (mid-scale). Normally the D/A is configured to power up to 0V, so that when the power is turned on the device connected to the analog output doesn’t see a step change in voltage. Therefore, for unipolar mode normally the outputs should be configured for zero-scale reset, and for bipolar mode the outputs should be configured for mid-scale reset, since 0V is halfway between -10V and +10V for the ±10V range.

Prometheus CPU User Manual V1.44

Page 46

Image 46
Contents Prometheus Table of Contents 22.2 22.4Description CPUSystem Features FeaturesProcessor Section Analog Output Counter/TimersAnalog Input Digital I/OPrometheus Board Drawing Cable a Main I/O Connector J3O Headers Cable BLPT1 Connector Part NumbersCOM1 COM4 IR RX, IR TXInput Power J11 Ethernet J4 Output Power J12USB J5 Auxiliary Serial Port Connector J15 Watchdog/Failsafe Features J6Floppy Drive J7 IDE Drive J8Data Acquisition I/O Connector J14 Model PR-Z32-EA only Signal Name Definition11 PC/104 Bus Connectors J2 PC/104 16-bit bus connector J1 PC/104 8-bit bus connectorJ10 System Configuration Jumper ConfigurationCmos RAM J6 Watchdog Timer & System Recovery System Resources System FeaturesCPU Chip Selects Console Redirection to a Serial Port Watchdog Timer System Reset Failsafe Mode / Bios RecoveryBackup Battery Flash MemoryBios Settings BiosDOS Bios Download / Recovery Disk-On-Board Flash File Storage Initial SetupOperating System Formatting Known Limitations Life Cycle Management and CalculationsSystem I/O EthernetSerial Ports Parallel PortBooting to DOS From a Floppy Drive Installing an OS From a Floppy Drive onto a Flashdisk ModuleInstalling an OS from a Hard Disk onto a Flashdisk Module Data Acquisition Circuit Base + Write Function Read Function Data Acquisition Circuitry I/O MAPBase Address LSBData Acquisition Circuit Register Map AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0Register Bit Definitions Command RegisterBase + Base + Write Not Used Read Base + ReadValue = Base + 0 value + Base + 1 value AD9 AD8Base + Read/Write Channel Register Base + Write Analog Input Gain Base + Read Analog Input Status STS Wait Dacbsy OVF ScanenBase + Read/Write Fifo Threshold Base + Read/Write Interrupt / DMA / Counter ControlCKSEL1 CKFRQ1 CKFRQ0 Adclk Dmaen Tinte Dinte Ainte FT5 FT4 FT3 FT2 FT1 FT0Base + Read Channel and Fifo Status Base + WriteDA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0 FD5 FD4 FD3 FD2 FD1 FD0DA9 DA8 Base + Write DAC MSB + Channel NoDACH1 DACH0 Base + Read Analog Operation StatusDioctr Dira Dirch Dirb Dircl Base + Read / WriteBase + Read / Write Digital I/O Control Register Dioctr =Base + Read/Write Counter/Timer D15 Base + Read/Write Counter/Timer D7Base + Read/Write Counter/Timer D23 Base + Write Counter/Timer Control Register Ctrno Latch Gtdis Gten Ctdis Cten Load CLRBase + Read Fpga Revision Code REV7 REV6 REV5 REV4 REV3 REV2 REV1 REV0Data Acquisition Circuit Configuration Single-ended / Differential Inputs Analog Output ConfigurationUnipolar / Bipolar Inputs Overview Analog Input Ranges and ResolutionInput Range Resolution 1 LSB Input Range SelectionPerforming AN A/D Conversion Perform an A/D conversion on the current channel LSB = inpbase MSB = inpbase+1Input voltage = A/D value / 32768 * Full-scale input range 15.A/D SCAN, INTERRUPT, and Fifo Operation LOW, High Prometheus A/D Operating ModesAinte Scanen Description Analog Output Ranges and ResolutionResolution LSB = Output voltage range16.4 D/A Conversion Formulas and Tables REF 1 LSBConversion Formulas for Bipolar Output Ranges Generating AN Analog Output 18.2 A/D unipolar offset Analog Circuit Calibration18.1 A/D bipolar offset 18.3 A/D full-scaleDigital I/O Operation Counter 0 A/D Sample Control COUNTER/TIMER OperationCounter 1 Counting/Totalizing Functions Command Sequences CounterCounter Outpbase+15,0x01 Outpbase+15,0x81 Data Acquisition Specifications Power Supply ConfigurationUsing the Flashdisk with Another IDE Drive Flashdisk Module23. I/O Panel Board Location Type Description Panel Board I/O ConnectorsPanel Board Top Side / External Use I/O Connectors USB aPanel Board Power Connections J12 pinout to/from DC/DC power supplyJ3 Pinout J9 Pinout Installation J5 USBFlash Disk Programmer Board Photo No Cable No Description 25.I/O CablesCable Kit C-PRZ-KIT PL5 pin no PL5 Signal J25 pin no J25 Signal VGA Accessory BoardPL5 pin no DB15F pin no Signal Links Prometheus Connector Manufacturer Manufacturer Part NoMounting Prometheus on a Baseboard Website informationPage 28.PC/104 Mechanical Drawing

PR-Z32-E-ST, PR-Z32-EA-ST specifications

The Diamond Systems PR-Z32-EA-ST and PR-Z32-E-ST are pioneering solutions in the realm of embedded computing systems, designed to meet the challenging demands of various industrial applications. These boards harness advanced technologies and a comprehensive feature set to ensure exceptional performance, flexibility, and reliability.

At the heart of the PR-Z32 series is a robust processor architecture that combines efficiency with processing power. The systems are built around the Zynq-7000 SoC (System on Chip), which integrates a dual-core ARM Cortex-A9 processor with Xilinx FPGA technology. This hybrid architecture provides the ability to run complex algorithms and custom logic concurrently, making the boards ideal for applications requiring intense computational tasks such as image processing, data acquisition, and real-time control.

One of the main features of the PR-Z32-EA-ST and PR-Z32-E-ST is their versatility. Both variants support a wide range of I/O options, including USB, Ethernet, CAN, and serial interfaces. This range of connectivity allows for integrations with various sensors, actuators, and other peripheral devices, making it suitable for industrial automation, robotics, and IoT projects. The inclusion of multiple GPIO pins also enhances the capability of the boards to interface with additional hardware.

In terms of performance, the PR-Z32 series supports substantial amounts of on-board memory, which can be essential for applications requiring the storage and processing of large datasets. The configurations are often customizable, allowing users to select the appropriate amount of RAM and on-board flash memory for their specific applications.

Reliability is a critical characteristic of the Diamond Systems PR-Z32 series. The boards are built to withstand adverse environmental conditions, making them suitable for deployment in industrial environments. They are often designed to operate over a wide temperature range, ensuring functionality in both hot and cold climates. Additionally, the boards are compliant with various industry standards, assuring users of their robustness and durability.

Moreover, the PR-Z32-EA-ST and PR-Z32-E-ST support real-time operating systems (RTOS) and conventional operating systems such as Linux. This support provides developers with the flexibility to choose the best environment for their applications, whether they require real-time performance or full-fledged operating system features.

In conclusion, the Diamond Systems PR-Z32-EA-ST and PR-Z32-E-ST are formidable options for those seeking powerful, versatile, and reliable embedded computing solutions. With their advanced SoC architecture, flexible I/O options, extensive memory configurations, and environmental resilience, these boards are well-equipped to tackle the challenges of modern industrial applications.