Diamond Systems PR-Z32-EA-ST, PR-Z32-E-ST user manual Data Acquisition Specifications

Page 62

21.DATA ACQUISITION SPECIFICATIONS

Analog Inputs (PR-Z32-EA only)

 

 

No. of inputs

8 differential or 16 single-ended (user selectable)

A/D resolution

16 bits (1/65,536 of full scale)

Input ranges

Bipolar:

±10V, ±5V, ±2.5V, ±1.25V

 

Unipolar:

0-10V, 0-5V, 0-2.5V

Input bias current

50nA max

 

Maximum input voltage

±10V for linear operation

Overvoltage protection

±35V on any analog input without damage

Nonlinearity

±3LSB, no missing codes

Drift

5PPM/oC typical

Conversion rate

100,000 samples per second max

Conversion trigger

software trigger, internal pacer clock, or external TTL signal

FIFO

48 samples; programmable interrupt threshold

Analog Outputs (PR-Z32-EA only)

 

No. of outputs

4

 

D/A resolution

12 bits (1/4096 of full scale)

Output ranges

Unipolar: 0-10V or user-programmable

 

Bipolar: ±10V or user-programmable

Output current

±5mA max per channel

Settling time

4S max to ±1/2 LSB

Relative accuracy

±1 LSB

 

Nonlinearity

±1 LSB, monotonic

Digital I/O (PR-Z32-EA only)

 

 

No. of lines

24

 

Compatibility

3.3V and 5V logic compatible

Input voltage

Logic 0: -0.5V min, 0.8V max; Logic 1: 2.0V min, 5.5V max

Input current

±1A max

 

Output voltage

Logic 0: 0.0V min, 0.4V max; Logic 1: 2.4V min, 3.3V max

Output current

Logic 0: 12mA max; Logic 1: -8mA max

I/O capacitance

10pF max

 

Counter/Timers (PR-Z32-EA only)

 

A/D pacer clock

24-bit down counter

Pacer clock source

10MHz, 1MHz, or external signal

General purpose

16-bit down counter

GP clock source

10MHz, 100KHz, or external signal

General

 

 

Power supply

+5VDC ±5%

Current consumption

0.7A – 1.1A typical

Operating temperature

-40 to +85oC

Operating humidity

5% to 95% noncondensing

Prometheus CPU User Manual V1.44

Page 62

Image 62
Contents Prometheus Table of Contents 22.2 22.4Description CPUProcessor Section FeaturesSystem Features Analog Output Counter/TimersAnalog Input Digital I/OPrometheus Board Drawing Cable a Main I/O Connector J3O Headers Cable BLPT1 Connector Part NumbersCOM1 COM4 IR RX, IR TXInput Power J11 USB J5 Output Power J12Ethernet J4 Auxiliary Serial Port Connector J15 Watchdog/Failsafe Features J6Floppy Drive J7 IDE Drive J8Data Acquisition I/O Connector J14 Model PR-Z32-EA only Signal Name Definition11 PC/104 Bus Connectors J2 PC/104 16-bit bus connector J1 PC/104 8-bit bus connectorCmos RAM Jumper ConfigurationJ10 System Configuration J6 Watchdog Timer & System Recovery CPU Chip Selects System FeaturesSystem Resources Console Redirection to a Serial Port Watchdog Timer System Reset Failsafe Mode / Bios RecoveryBackup Battery Flash MemoryDOS BiosBios Settings Bios Download / Recovery Operating System Formatting Initial SetupDisk-On-Board Flash File Storage Known Limitations Life Cycle Management and CalculationsSystem I/O EthernetSerial Ports Parallel PortBooting to DOS From a Floppy Drive Installing an OS From a Floppy Drive onto a Flashdisk ModuleInstalling an OS from a Hard Disk onto a Flashdisk Module Data Acquisition Circuit Base + Write Function Read Function Data Acquisition Circuitry I/O MAPBase Address LSBData Acquisition Circuit Register Map AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0Base + Command RegisterRegister Bit Definitions Base + Write Not Used Read Base + ReadValue = Base + 0 value + Base + 1 value AD9 AD8Base + Read/Write Channel Register Base + Write Analog Input Gain Base + Read Analog Input Status STS Wait Dacbsy OVF ScanenBase + Read/Write Fifo Threshold Base + Read/Write Interrupt / DMA / Counter ControlCKSEL1 CKFRQ1 CKFRQ0 Adclk Dmaen Tinte Dinte Ainte FT5 FT4 FT3 FT2 FT1 FT0Base + Read Channel and Fifo Status Base + WriteDA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0 FD5 FD4 FD3 FD2 FD1 FD0DA9 DA8 Base + Write DAC MSB + Channel NoDACH1 DACH0 Base + Read Analog Operation StatusDioctr Dira Dirch Dirb Dircl Base + Read / WriteBase + Read / Write Digital I/O Control Register Dioctr =Base + Read/Write Counter/Timer D23 Base + Read/Write Counter/Timer D7Base + Read/Write Counter/Timer D15 Base + Write Counter/Timer Control Register Ctrno Latch Gtdis Gten Ctdis Cten Load CLRBase + Read Fpga Revision Code REV7 REV6 REV5 REV4 REV3 REV2 REV1 REV0Data Acquisition Circuit Configuration Unipolar / Bipolar Inputs Analog Output ConfigurationSingle-ended / Differential Inputs Overview Analog Input Ranges and ResolutionInput Range Resolution 1 LSB Input Range SelectionPerforming AN A/D Conversion Perform an A/D conversion on the current channel LSB = inpbase MSB = inpbase+1Input voltage = A/D value / 32768 * Full-scale input range 15.A/D SCAN, INTERRUPT, and Fifo Operation Ainte Scanen Prometheus A/D Operating ModesLOW, High Description Analog Output Ranges and ResolutionResolution LSB = Output voltage range16.4 D/A Conversion Formulas and Tables REF 1 LSBConversion Formulas for Bipolar Output Ranges Generating AN Analog Output 18.2 A/D unipolar offset Analog Circuit Calibration18.1 A/D bipolar offset 18.3 A/D full-scaleDigital I/O Operation Counter 1 Counting/Totalizing Functions COUNTER/TIMER OperationCounter 0 A/D Sample Control Command Sequences CounterCounter Outpbase+15,0x01 Outpbase+15,0x81 Data Acquisition Specifications Power Supply ConfigurationUsing the Flashdisk with Another IDE Drive Flashdisk Module23. I/O Panel Board Location Type Description Panel Board I/O ConnectorsPanel Board Top Side / External Use I/O Connectors USB aPanel Board Power Connections J12 pinout to/from DC/DC power supplyJ3 Pinout J9 Pinout Installation J5 USBFlash Disk Programmer Board Cable Kit C-PRZ-KIT 25.I/O CablesPhoto No Cable No Description PL5 pin no DB15F pin no Signal VGA Accessory BoardPL5 pin no PL5 Signal J25 pin no J25 Signal Links Prometheus Connector Manufacturer Manufacturer Part NoMounting Prometheus on a Baseboard Website informationPage 28.PC/104 Mechanical Drawing

PR-Z32-E-ST, PR-Z32-EA-ST specifications

The Diamond Systems PR-Z32-EA-ST and PR-Z32-E-ST are pioneering solutions in the realm of embedded computing systems, designed to meet the challenging demands of various industrial applications. These boards harness advanced technologies and a comprehensive feature set to ensure exceptional performance, flexibility, and reliability.

At the heart of the PR-Z32 series is a robust processor architecture that combines efficiency with processing power. The systems are built around the Zynq-7000 SoC (System on Chip), which integrates a dual-core ARM Cortex-A9 processor with Xilinx FPGA technology. This hybrid architecture provides the ability to run complex algorithms and custom logic concurrently, making the boards ideal for applications requiring intense computational tasks such as image processing, data acquisition, and real-time control.

One of the main features of the PR-Z32-EA-ST and PR-Z32-E-ST is their versatility. Both variants support a wide range of I/O options, including USB, Ethernet, CAN, and serial interfaces. This range of connectivity allows for integrations with various sensors, actuators, and other peripheral devices, making it suitable for industrial automation, robotics, and IoT projects. The inclusion of multiple GPIO pins also enhances the capability of the boards to interface with additional hardware.

In terms of performance, the PR-Z32 series supports substantial amounts of on-board memory, which can be essential for applications requiring the storage and processing of large datasets. The configurations are often customizable, allowing users to select the appropriate amount of RAM and on-board flash memory for their specific applications.

Reliability is a critical characteristic of the Diamond Systems PR-Z32 series. The boards are built to withstand adverse environmental conditions, making them suitable for deployment in industrial environments. They are often designed to operate over a wide temperature range, ensuring functionality in both hot and cold climates. Additionally, the boards are compliant with various industry standards, assuring users of their robustness and durability.

Moreover, the PR-Z32-EA-ST and PR-Z32-E-ST support real-time operating systems (RTOS) and conventional operating systems such as Linux. This support provides developers with the flexibility to choose the best environment for their applications, whether they require real-time performance or full-fledged operating system features.

In conclusion, the Diamond Systems PR-Z32-EA-ST and PR-Z32-E-ST are formidable options for those seeking powerful, versatile, and reliable embedded computing solutions. With their advanced SoC architecture, flexible I/O options, extensive memory configurations, and environmental resilience, these boards are well-equipped to tackle the challenges of modern industrial applications.