Diamond Systems PR-Z32-E-ST user manual Known Limitations, Life Cycle Management and Calculations

Page 25

Known Limitations

RFD (onboard flash drive) is not compatible with DOS expanded memory configuration in EMM386.EXE. Use the NOEMS switch appended to the end of the EMM386 line in your config.sys to bypass EMS. Example line in config.sys: device=c:\DOS\EMM386.exe NOEMS

The onboard flash chip has a limitation of 2,000,000 erase cycles, so swap drives or virtual memory functions should not be used.

Currently we are shipping 2M byte Flash chips so Onboard Flash drives can be formatted with 1.45M bytes left over. 4 and 8M byte versions can be custom ordered. Contact sales@diamondsystems.com for more information.

Only 16 bit OS’s are supported for this Onboard Flash. MSDOS 6.22 and ROMDOS 6.22 and 7.0 have been tested. Other OS’s may work as long as it has some sort of 16-bit compatibility mode.

Life Cycle Management and Calculations

The Disk-On-Board feature provides a simple form of wear leveling. Each time data is written, the next consecutive available memory space is used, and the current location is marked as garbage and made available for later use. This way the system walks through the entire available space before rewriting the current file location. This technique helps to dramatically increase the chip’s lifetime, because the entire chip is used to spread out the wear caused by the repeated erase cycles.

A typical embedded application consists of reading a file, updating it, and repeating the process over and over again. The formula for calculating the number of times this may be done before the flash reaches its limit is as follows:

Number of file writes = (size of chip / size of file) * lifetime of chip

Where size of chip = 1.45MB and lifetime of chip = 2,000,000. This formula reveals the increase in lifetime provided by the wear leveling. The lifetime is increased by the ratio of the chip’s total capacity to the file size.

To calculate the number of days the chip will last, simply factor in the number of updates per day:

Lifetime in days = number of file writes / file writes per day

Prometheus CPU User Manual V1.44

Page 25

Image 25
Contents Prometheus Table of Contents 22.4 22.2CPU DescriptionSystem Features FeaturesProcessor Section Analog Input Counter/TimersAnalog Output Digital I/OPrometheus Board Drawing O Headers Main I/O Connector J3Cable a Cable BCOM1 COM4 Connector Part NumbersLPT1 IR RX, IR TXInput Power J11 Ethernet J4 Output Power J12USB J5 Watchdog/Failsafe Features J6 Auxiliary Serial Port Connector J15IDE Drive J8 Floppy Drive J7Signal Name Definition Data Acquisition I/O Connector J14 Model PR-Z32-EA onlyJ2 PC/104 16-bit bus connector J1 PC/104 8-bit bus connector 11 PC/104 Bus ConnectorsJ10 System Configuration Jumper ConfigurationCmos RAM J6 Watchdog Timer & System Recovery System Resources System FeaturesCPU Chip Selects Console Redirection to a Serial Port Watchdog Timer Backup Battery Failsafe Mode / Bios RecoverySystem Reset Flash MemoryBios Settings BiosDOS Bios Download / Recovery Disk-On-Board Flash File Storage Initial SetupOperating System Formatting Life Cycle Management and Calculations Known LimitationsEthernet System I/OParallel Port Serial PortsInstalling an OS From a Floppy Drive onto a Flashdisk Module Booting to DOS From a Floppy DriveInstalling an OS from a Hard Disk onto a Flashdisk Module Data Acquisition Circuit Base Address Data Acquisition Circuitry I/O MAPBase + Write Function Read Function LSBAD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 Data Acquisition Circuit Register MapRegister Bit Definitions Command RegisterBase + Value = Base + 0 value + Base + 1 value Base + ReadBase + Write Not Used Read AD9 AD8Base + Read/Write Channel Register Base + Write Analog Input Gain STS Wait Dacbsy OVF Scanen Base + Read Analog Input StatusCKSEL1 CKFRQ1 CKFRQ0 Adclk Dmaen Tinte Dinte Ainte Base + Read/Write Interrupt / DMA / Counter ControlBase + Read/Write Fifo Threshold FT5 FT4 FT3 FT2 FT1 FT0DA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0 Base + WriteBase + Read Channel and Fifo Status FD5 FD4 FD3 FD2 FD1 FD0DACH1 DACH0 Base + Write DAC MSB + Channel NoDA9 DA8 Base + Read Analog Operation StatusBase + Read / Write Digital I/O Control Register Base + Read / WriteDioctr Dira Dirch Dirb Dircl Dioctr =Base + Read/Write Counter/Timer D15 Base + Read/Write Counter/Timer D7Base + Read/Write Counter/Timer D23 Ctrno Latch Gtdis Gten Ctdis Cten Load CLR Base + Write Counter/Timer Control RegisterREV7 REV6 REV5 REV4 REV3 REV2 REV1 REV0 Base + Read Fpga Revision CodeData Acquisition Circuit Configuration Single-ended / Differential Inputs Analog Output ConfigurationUnipolar / Bipolar Inputs Input Range Resolution 1 LSB Analog Input Ranges and ResolutionOverview Input Range SelectionPerforming AN A/D Conversion LSB = inpbase MSB = inpbase+1 Perform an A/D conversion on the current channelInput voltage = A/D value / 32768 * Full-scale input range 15.A/D SCAN, INTERRUPT, and Fifo Operation LOW, High Prometheus A/D Operating ModesAinte Scanen Resolution Analog Output Ranges and ResolutionDescription LSB = Output voltage rangeREF 1 LSB 16.4 D/A Conversion Formulas and TablesConversion Formulas for Bipolar Output Ranges Generating AN Analog Output 18.1 A/D bipolar offset Analog Circuit Calibration18.2 A/D unipolar offset 18.3 A/D full-scaleDigital I/O Operation Counter 0 A/D Sample Control COUNTER/TIMER OperationCounter 1 Counting/Totalizing Functions Counter Command SequencesCounter Outpbase+15,0x01 Outpbase+15,0x81 Data Acquisition Specifications Using the Flashdisk with Another IDE Drive ConfigurationPower Supply Flashdisk Module23. I/O Panel Board Panel Board Top Side / External Use I/O Connectors Panel Board I/O ConnectorsLocation Type Description USB aJ12 pinout to/from DC/DC power supply Panel Board Power ConnectionsJ3 Pinout J5 USB J9 Pinout InstallationFlash Disk Programmer Board Photo No Cable No Description 25.I/O CablesCable Kit C-PRZ-KIT PL5 pin no PL5 Signal J25 pin no J25 Signal VGA Accessory BoardPL5 pin no DB15F pin no Signal Mounting Prometheus on a Baseboard Prometheus Connector Manufacturer Manufacturer Part NoLinks Website informationPage 28.PC/104 Mechanical Drawing

PR-Z32-E-ST, PR-Z32-EA-ST specifications

The Diamond Systems PR-Z32-EA-ST and PR-Z32-E-ST are pioneering solutions in the realm of embedded computing systems, designed to meet the challenging demands of various industrial applications. These boards harness advanced technologies and a comprehensive feature set to ensure exceptional performance, flexibility, and reliability.

At the heart of the PR-Z32 series is a robust processor architecture that combines efficiency with processing power. The systems are built around the Zynq-7000 SoC (System on Chip), which integrates a dual-core ARM Cortex-A9 processor with Xilinx FPGA technology. This hybrid architecture provides the ability to run complex algorithms and custom logic concurrently, making the boards ideal for applications requiring intense computational tasks such as image processing, data acquisition, and real-time control.

One of the main features of the PR-Z32-EA-ST and PR-Z32-E-ST is their versatility. Both variants support a wide range of I/O options, including USB, Ethernet, CAN, and serial interfaces. This range of connectivity allows for integrations with various sensors, actuators, and other peripheral devices, making it suitable for industrial automation, robotics, and IoT projects. The inclusion of multiple GPIO pins also enhances the capability of the boards to interface with additional hardware.

In terms of performance, the PR-Z32 series supports substantial amounts of on-board memory, which can be essential for applications requiring the storage and processing of large datasets. The configurations are often customizable, allowing users to select the appropriate amount of RAM and on-board flash memory for their specific applications.

Reliability is a critical characteristic of the Diamond Systems PR-Z32 series. The boards are built to withstand adverse environmental conditions, making them suitable for deployment in industrial environments. They are often designed to operate over a wide temperature range, ensuring functionality in both hot and cold climates. Additionally, the boards are compliant with various industry standards, assuring users of their robustness and durability.

Moreover, the PR-Z32-EA-ST and PR-Z32-E-ST support real-time operating systems (RTOS) and conventional operating systems such as Linux. This support provides developers with the flexibility to choose the best environment for their applications, whether they require real-time performance or full-fledged operating system features.

In conclusion, the Diamond Systems PR-Z32-EA-ST and PR-Z32-E-ST are formidable options for those seeking powerful, versatile, and reliable embedded computing solutions. With their advanced SoC architecture, flexible I/O options, extensive memory configurations, and environmental resilience, these boards are well-equipped to tackle the challenges of modern industrial applications.