Studer Innotec RCC-02, RCC-03 user manual Updates, Updating Process, Compatibility

Page 45

RCC

UPDATES

The RCC remote control program as well as the code in the inverters/chargers of the Xtender series can be updated in order to integrate new features.

For the RCC remote control it is also possible to implement new display languages (up to a maximum of 4 on each RCC remote control). You may obtain information about the availability of updates or additional languages from your installer or consult the website: www.studer- innotec.com.

UPDATING PROCESS

Before introducing the SD card to carry out the updating, do switch off all Xtenders (off).

To carry out an update, enter the SD card containing the correct files in the RCC remote control slot intended for this.

The system checks the compatibility of the hardware with the software present on the SD card and if it proves to be compatible the update is carried out automatically.

The SD card must not be removed before the end of the updating process. Yet if the updating process is interrupted, the SD card has to be inserted again and the process will carry on.

The steps of the updating process are the following:

Updating the code of the remote control.

Updating of the files of the remote control.

Updating of the files of the inverters.

Updating of the code of the inverters.

The updating process takes 3 to 15 minutes, depending on the number of inverters connected to the remote control.

Once the update has been carried out, the remote control displays the basic screen and you have immediate access to the new functions.

When there is a change of language, the system restarts automatically with the new language as the current language.

If the installation consists of several remote controls, each of them has to be updated separately.

Beware: the updating will stop the running of all Xtenders connected to the remote control.

COMPATIBILITY

Studer Innotec guarantees the compatibility of the software updates with the hardware for one year, starting from the date of purchase. The updates are no longer guaranteed beyond this date and a hardware upgrade may be required. Please contact your reseller for any additional information on compatibility.

45

Image 45
Contents Studer Innotec Rue des Casernes CH 1950 Sion Studer Innotec Table of contents Maximum current of the AC source power sharing RCC Studer Innotec Foreword ConventionsProduct Recycling Your RESELLER’ Contact Details Studer Innotec Contact DetailsSafety Instructions WarrantyAcceptance of the Software Licence and Updates Limitation of ResponsabilityStuder Innotec Introduction Controls and IndicatorsModels Concerned SD CardSeries Connection ConnectionRCC-02 RCC-03 DimensionsAdjustment of the Language Quick Start GuideAdaptation to the Source Adaptation to the Batterie Activation of the Function SMART-BOOST Basic Displays Activating and Deactivating the Combi Xtender Adjustment of Date 5002 and Time Adjustment of the RCC Remote ControlAdjustment of the Contrast Adjustment of the BACK-LIGHTINGDuration of the back-lighting Backup of statisticsBackup of Xtender configurations Backup of remote control configurationsLoading the remote control configurations Loading the Xtender configurationsInformation on the Operating Mode of the Installation Display of the Parallel and THREE-PHASE Systems Stop Battery Voltage TOO LOW Alarm LOW Battery VoltageStop High Battery Voltage Event HistoryError Input Voltage TOO High Error Incorrect Input FrequencyError Input Voltage TOO LOW Stop OvertemperatureError Voltage AT AC OUT Message Power Sharing Exceeded Transfer ProhibitedError Phase not Defined Stored EventsAdjustment of the Combi Xtender Maximum current of the AC source power sharing Basic configurationsLocking Authorised inverterAuthorised charger Automatic restartSmart boost authorised Authorised transferRestore default configurations Battery cycle and chargerRCC Studer Innotec Battery maintenance voltage floating Temperature correction coefficientForce passage to floating mode Charge currentEqualization phase Absorption phaseEqualization current Equalization before absorption phaseEqualization voltage Duration of equalizationStandby level Inverter configurationsOutput voltage End of equalization activated by the currentCombi configurations Inverter-Charger Configurations for auxiliary contacts 1 and 2 1201 Switching mode 1202 Combination of events mode 1497Simple functions Battery overvoltage 1227 Battery undervoltage alarm 1226Temporal restrictions 1203 Contacts activated by an event 1455Contacts activated by the battery voltage 1245 Deactivate if the battery is in floating mode 1516 Contacts activated by inverter power or smart boost 1257Contacts activated with set schedules 1269 Dynamic compensation of the thresholds 1288Phase integral mode Extended functionsMulti Xtender Remote Controls Information on the SystemXtender Updates Updating ProcessCompatibility USE of a Limited Power Source Application ExamplesGénéral USE INVERTER, Charger with Grid Load Shedding of the Second Priority Loads USE to Increase the Power on AN Existing InstallationAnnexes Annexe 1 List of Configuration InterdependenciesRCC Studer Innotec RCC

RCC-03, RCC-02 specifications

Studer Innotec, a renowned Swiss company in the field of power electronics, has made significant strides with its range of battery management systems, particularly the RCC-02 and RCC-03 models. These units are renowned for their cutting-edge technologies, impressive features, and superior performance in managing energy systems for both off-grid and hybrid applications.

The RCC-02 and RCC-03 Remote Control Displays provide end-users with an intuitive interface to monitor and control their energy systems seamlessly. With a clear and easy-to-read display, these units offer real-time data, allowing users to view essential information such as battery voltage, current, and state of charge. This vital information empowers users to make informed decisions regarding energy consumption and system management.

One of the standout features of the RCC-02 and RCC-03 models is their compatibility with a wide range of Studer Innotec products, including inverters and battery chargers. This versatility ensures seamless integration into existing systems, making it an ideal choice for both new installations and upgrades of existing systems.

Both models incorporate advanced communication technologies such as RS-232 and CAN-bus, allowing for easy data logging and system monitoring. This connectivity not only ensures that the user has access to real-time data but also enables remote monitoring and diagnostics, significantly enhancing the overall user experience.

Another characteristic that sets the RCC-02 and RCC-03 apart is their robust design. These units are engineered to withstand the harsh conditions often found in off-grid environments, ensuring reliability and durability over an extended lifespan. The thoughtful design also includes user-friendly controls, making it easy to configure settings and manage system parameters for a wide array of applications.

Energy efficiency is paramount in today's energy-conscious world, and the RCC-02 and RCC-03 are designed to optimize battery usage. By providing timely information about battery status and energy flow, these units assist users in maximizing the lifespan of their batteries and ensuring that their energy resources are used effectively.

In summary, Studer Innotec’s RCC-02 and RCC-03 Remote Control Displays are essential components for anyone looking to harness the power of reliable battery management systems. With their advanced technologies, user-friendly interfaces, and robust construction, they represent the cutting edge of energy management in both off-grid and hybrid applications. Whether for residential, commercial, or industrial use, these units deliver efficiency, reliability, and peace of mind to users.