Friedrich H)A09K25L Sealed Refrigeration System Repairs, Equipment Required, High Pressure Hazard

Page 23

SEALED REFRIGERATION SYSTEM REPAIRS

IMPORTANT

ANY SEALED SYSTEM REPAIRS TO COOL-ONLY MODELS REQUIRE THE INSTALLATION OF A LIQUID LINE DRIER.

ALSO, ANY SEALED SYSTEM REPAIRS TO HEAT PUMP MODELS REQUIRE THE INSTALLATION OF A SUCTION LINE DRIER.

EQUIPMENT REQUIRED:

1.Voltmeter

2.Ammeter

3.Ohmmeter

4.E.P.A. Approved Refrigerant Recovery System

5.Vacuum Pump (capable of 200 microns or less vacuum.)

6.Acetylene Welder

7.Electronic Halogen Leak Detector capable of detect- ing HFC (Hydrofluorocarbon) refrigerants.

8.Accurate refrigerant charge measuring device such as:

a.Balance Scales - 1/2 oz. accuracy

b.Charging Board - 1/2 oz. accuracy

9.High Pressure Gauge - (0 - 750 lbs.)

10.Low Pressure Gauge - (30 - 200 lbs.)

11.Vacuum Gauge - (0 - 1000 microns)

12. Facilities for flowing nitrogen through refrigeration tubing during all brazing processes.

EQUIPMENT MUST BE CAPABLE OF:

1.Recovering refrigerant to EPA required levels.

2.Evacuation from both the high side and low side of the system simultaneously.

3.Introducing refrigerant charge into high side of the system.

4.Accurately weighing the refrigerant charge actually introduced into the system.

WARNING

RISK OF ELECTRIC SHOCK

Unplug and/or disconnect all electrical power to the unit before performing inspections, maintenances or service.

Failure to do so could result in electric shock,

serious injury or death.

WARNING

HIGH PRESSURE HAZARD

Sealed Refrigeration System contains refrigerant and oil under high pressure.

Proper safety procedures must be followed, and proper protective clothing must be worn when working with refrigerants.

Failure to follow these procedures could result in serious injury or death.

Refrigerant Charging

Proper refrigerant charge is essential to proper unit opera- tion. Operating a unit with an improper refrigerant charge will

result in reduced performance (capacity) and/or efficiency.

Accordingly, the use of proper charging methods during ser- vicing will insure that the unit is functioning as designed and that its compressor will not be damaged.

Too much refrigerant (overcharge) in the system is just as bad (if not worse) than not enough refrigerant (undercharge). They both can be the source of certain compressor failures if they remain uncorrected for any period of time. Quite often, other problems (such as low air flow across evaporator, etc.) are misdiagnosed as refrigerant charge problems. The refrigerant circuit diagnosis chart will assist you in properly diagnosing these systems.

An overcharged unit will at times return liquid refrigerant (slugging) back to the suction side of the compressor eventually causing a mechanical failure within the compressor. This mechanical failure can manifest itself as valve failure, bearing failure, and/or other mechanical failure. The specific type of failure will be influenced by the amount of liquid being returned, and the length of time the slugging continues.

Not enough refrigerant (undercharge) on the other hand, will cause the temperature of the suction gas to increase to the point where it does not provide sufficient cooling for the compressor motor. When this occurs, the motor winding temperature will increase causing the motor to overheat and possibly cycle open the compressor overload protector. Continued overheating of the motor windings and/or cycling of the overload will eventually lead to compressor motor or overload failure.

21

Image 23
Contents R v i c e M a n u a l R 4 1 0 a M o d e l s Introduction Technical Support Contact InformationTable of Contents Your safety and the safety of others are very important Important Safety InformationRefrigeration System Hazards Property Damage Hazards Production RUN Number Product Line Serial Number Year ManufacturedMonth Manufactured Model Chassis SpecificationsIndoor WET Bulb TEMP. Degrees F AT 80 F D.B Extended Cooling PerformanceElectric Shock Hazard Electrical RequirementsRT5 Two speed fan RT4 One speed fan Remote Thermostat and Low Voltage Control ConnectionsThermostat Connections Quiet Start/Stop Electronic Control Board FeaturesElectronic Control Configuration Test Mode Electronic Control Error Code DiagnosticsDiagnostics Thermostat Compatibility Vpak electronic control FeaturesExternal Static Pressure Explanation of charts Capacitor Connections Components TestingCapacitors Capacitor Check with Capacitor AnalyzerDrain PAN Valve Components TestingHeater Elements and Limit SWITCHES’ Specifications Refrigeration Sequence of Operation Refrigeration AssemblyCUT/SEVER Hazard ServiceRisk of Electric Shock Sealed Refrigeration System RepairsEquipment Required Equipment Must be CapableFreeze Hazard Method Of Charging / RepairsUndercharged Refrigerant Systems Burn HazardRestricted Refrigerant System Overcharged Refrigerant SystemsCapillary Tube Systems Hermetic Components CheckMetering Device Check ValveChecking the Reversing Valve Testing the CoilReversing Valve DESCRIPTION/OPERATION Fire Hazard Procedure For Changing Reversing ValveTouch Test in Heating/Cooling Cycle Compressor Checks Ground Test Single Phase Resistance TestExternal Overload Vpak 9, 12, 18 K Btus Internal Overload Vpak 24 K BtusHigh Temperatures Compressor ReplacementRecommended procedure for compressor replacement Electrical Shock Hazard Routine Maintenance9K BTU, 12K BTU, & 18K BTU Electrical Troubleshooting Chart CoolingCircuit Breakers are Electrical Troubleshooting Chart Cooling 24K BTUHeat Pump Mode Electrical Troubleshooting Chart Heat PumpTroubleshooting Chart Heating Troubleshooting Chart CoolingElectric Heat VEA 09/12/18 with 2.5 KW, 3.4 KW or 5KWVHA 09/12/18 with 2.5 KW, 3.4 KW or 5KW Cool with Electric Heat Heat Pump with Electric Heat Cool with Electric Heat Heat Pump with Electric Heat Technical Service Data Technical Service DataVPK-ServMan-L Friedrich AIR Conditioning CO
Related manuals
Manual 7 pages 15.54 Kb Manual 61 pages 11.89 Kb Manual 27 pages 24.75 Kb

H)A09K25L, H)A12K50L, H)A09K50L, H)A24K10L, H)A24K25L specifications

Friedrich R410A is a refrigerant blend that has become a cornerstone in the HVAC industry, particularly for air conditioning systems. This hydrofluorocarbon (HFC) is known for its efficiency and environmentally friendly properties, making it a popular alternative to older refrigerants like R22.

One of the main features of R410A is its exceptional thermal efficiency. It has a higher cooling capacity compared to R22, which allows for smaller and more efficient equipment. This efficiency translates to reduced energy consumption and lower operating costs for users. Additionally, the higher pressure capability of R410A enables the design of more compact systems, which is particularly beneficial for residential and commercial applications where space is often limited.

R410A is characterized by its zero ozone depletion potential (ODP), which is a significant advantage over its predecessors. This makes it a more environmentally responsible choice, aligning with global initiatives to phase out substances that harm the ozone layer. However, it is essential to note that while R410A does not deplete the ozone, it does have a global warming potential (GWP) of approximately 2,088, making it less favorable in terms of climate impact compared to natural refrigerants.

In terms of technology, R410A is typically utilized in systems that are designed specifically for this refrigerant. Equipment compatible with R410A often features advanced components that can handle the higher pressures required. Many modern air conditioning systems equipped with R410A also incorporate variable-speed compressors and advanced electronic controls, enhancing overall performance and comfort.

Additionally, R410A systems often come equipped with variable refrigerant flow (VRF) technology, which allows for precise temperature control in multiple zones of a building. This versatility makes R410A an ideal choice for both residential and commercial installations, providing optimal comfort throughout various spaces.

In summary, Friedrich R410A stands out due to its high energy efficiency, zero ozone depletion potential, and suitability for modern HVAC technologies. As the industry moves towards more sustainable practices, R410A serves as a reliable refrigerant that balances performance with environmental responsibility. It’s a significant choice for anyone looking to invest in efficient and eco-friendly heating and cooling solutions.