Schneider Electric MNA01M001EN manual Mains reactor

Page 36

3 Engineering

LXM32

3.6Mains reactor

A mains reactor is required if at least one of the following criteria is met:

The output power of the drive is to be increased.

The short-circuit current rating (SCCR) of the supplying mains is greater than specified for the drives.

Current harmonics are to be reduced.

If one drive requires a mains reactor, then all drives connected via the DC bus must be equipped with mains reactors.

The mains reactor for several drives with a common AC fuse must be rated in such a way that the nominal current of the mains reactor is greater than the total of the input current of the drives.

The fuse rating of the fuse upstream of the mains reactor must not be greater than the nominal current of the mains reactor.

L1

 

 

L2

 

 

L3

 

 

E1

S1

 

E2

S2

 

E3

S3

 

 

L3 L2 L1

L3 L2 L1

 

PC/- PA/+

PC/- PA/+

DC+

 

 

DC -

 

 

Figure 10: Wiring of drives with common AC fuse and a mains reactor, exam- ple shows three-phase drives.

MNA01M001EN, V1.01, 08.2014

36

Common DC bus

Image 36
Contents LXM32 LXM32 Table of contents Accessories and spare parts Safety Information Hazard categoriesQualification of personnel Intended useBasic information Loss of Control DC bus voltage measurement Standards and terminologyLXM32 About the book LXM32 Introduction Permissible device types for common DC bus Technical Data Firmware versionDC bus data Braking resistor LXM32 ∙ U45M2 U90M2 D18M2 D30M2Parameter DCbuscompat External braking resistors accessories VW3A760 1Rxx 2Rxx 3Rxx 4Rxx 5Rxx 6Rxx 7RxxCables for the DC bus Engineering Energy balance Energy balance basicsRating Electromagnetic compatibility EMC DC bus connectionDC bus connection of single-phase drives FusesSee .2 DC fuses for fuses for the DC bus DC bus connection of three-phase drives Single mains fuse for three-phase drivesMultiple mains fuses for three-phase drives Supply via the DC bus Supply via the DC bus by a drive LXM32 Braking resistors Rating the braking resistorPmax Rating information Selecting an external braking resistor Mains reactor L2 L1 PC/- PA/+ Mains filter Mains reactor and external mains filter LXM32 Installation Specifications for drives with mains supply Assembling cablesPart Length in mm inches LXM32∙ D85, C10 Wiring the DC bus Drives with connectorsNector Drives with terminals Properties of the connection termi- nals CN9Connecting the DC bus DC bus connection, example with connectorVerifying installation LXM32 Commissioning Commissioning procedure DC bus connection LXM32 to LXM32MONMainsVolt LXM32 Setting the braking resistor parameters Accessories and spare parts DC bus accessoriesDC fuses External braking resistors Glossary Units and conversion tablesTemperature RotationTorque Moment of inertiaTerms and Abbreviations LXM32 Table of figures LXM32 Index EMCLXM32

MNA01M001EN specifications

The Schneider Electric MNA01M001EN is a highly advanced solution designed to optimize energy management and enhance operational efficiency in various applications. As a crucial component in Schneider Electric's portfolio of energy management systems, the MNA01M001EN stands out due to its innovative features and robust technologies.

One of the main features of the MNA01M001EN is its seamless integration capabilities. The device supports interfaces such as Modbus, which allows it to connect to a variety of energy monitoring devices and systems. This interoperability ensures that users can easily connect their existing infrastructure without needing significant alterations, streamlining the energy monitoring process.

Another notable characteristic of the MNA01M001EN is its real-time monitoring capabilities. The device provides instant access to critical data, which enables users to make informed decisions regarding energy consumption. By continuously tracking energy usage, the MNA01M001EN facilitates timely interventions that can lead to substantial energy savings and improved operational performance.

In terms of technology, the MNA01M001EN employs advanced analytics to interpret energy data effectively. This feature empowers businesses to identify patterns in energy consumption, recognize inefficiencies, and make strategic adjustments. The use of predictive analytics also enables proactive maintenance strategies, minimizing potential downtime and optimizing resource allocation.

The MNA01M001EN is designed with user-friendliness in mind. Its intuitive interface simplifies navigation, making it accessible to a wide range of users, from energy managers to facility operators. Moreover, the device is equipped with customizable dashboards that allow users to visualize important metrics in ways that suit their specific needs and preferences.

In addition, the MNA01M001EN is built with sustainability as a core principle. By promoting energy efficiency, the device not only helps organizations reduce their carbon footprint but also leads to significant cost savings in energy bills. As organizations continue to prioritize sustainability, products like the MNA01M001EN play an essential role in driving those efforts forward.

Furthermore, its compact design allows for easy installation in various environments, making it a versatile choice for different types of facilities, whether industrial, commercial, or residential. The robust build quality ensures durability, allowing the device to withstand demanding conditions.

In summary, the Schneider Electric MNA01M001EN is an essential tool in modern energy management. With its integration capabilities, real-time monitoring, advanced analytics, user-friendly design, and commitment to sustainability, it represents a powerful solution for organizations looking to optimize their energy usage and enhance their operational efficiency.