Eaton Electrical SPI9000 user manual Button Descriptions

Page 56

SPI9000 Inverter Unit FI9 – FI14 User Manual

September 2006

Table 5-5: Button Descriptions

Indicator

Description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This button is used to reset active faults (see Page 5-11, Active Faults Menu).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This button is used to switch between the two latest displays. This may be

 

 

 

 

 

 

 

 

 

useful when you want to see how the changed (new) value influences some

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

other value.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ENTER button is used for:

 

 

 

 

 

 

 

 

 

• Confirmation of selections

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Fault history reset (2 – 3 seconds)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This button is used to browse up through the main menu and pages of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

different submenus.

 

 

 

 

 

 

 

 

 

Edit values.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This button is used to browse down through the main menu and pages of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

different submenus.

 

 

 

 

 

 

 

 

 

Edit values.

 

 

 

 

 

 

 

 

 

This button is used to:

Move backward in the menu

• Move cursor left (in parameter menu)

Exit edit mode

Press and hold for 2 to 3 seconds to return to main menu

This button is used to:

Move forward in the menu

• Move cursor right (in parameter menu)

Enter edit mode

Pressing this button starts the motor if the keypad is in the active control place. See Page 5-10, Selection of Control Place.

Pressing this button stops the motor (unless disabled by parameter R3.4/

R3.6). See Page 5-10, Selection of Control Place.

5-4

For more information visit: www.EatonElectrical.com

MN04004002E

Image 56
Contents SPI9000 Inverter Unit FI9 FI14 Page Important Notice Please Read Contents SPI9000 Inverter Unit Block Diagram List of Figures25 HMI Acknowledge Timeout List of TablesHazardous High Voltage SafetyDefinitions and Symbols September Vii Grounding and ground fault protection Motor and Equipment SafetyOverview I 0 1 6 a 0 4 a 1 NReceiving and Inspection FI9 FI14 Inverter Unit Catalog Numbering SystemMaintenance Technical DataStandard Features of SPI Inverter Units StorageSPI9000 Inverter Unit Block Diagram Supply Voltage 465 800V DC, Motor Voltage 380 500V AC Power Ratings380 500V AC, 50/60 Hz, Three-Phase Inverters Ratings 525 690V AC, 50/60 Hz, Three-Phase Inverters Ratings Supply Voltage 640 1100V DC, Motor Voltage 525 690V ACControl Characteristics Technical InformationDescription Specification Supply Connection Motor ConnectionEMC at Default Settings SafetyDescription Specification Ambient Conditions Control ConnectionsStructure Inom Output Motor COS IDC Input DC Currents for 465 800V DC Supply VoltageDC Currents for 640 1100V DC Supply Voltage Mounting DimensionsApproximate Dimensions in Inches mm Inverters Voltage Dia SPI9000 FI10 Inverter Dimensions SPI9000 FI12 Inverter Dimensions Fan Cooling Frames FI9 to FI14Installation Space Power Losses Approximate Dimensions in Inches mm Frame VoltageMounting Space Requirements Required Cooling AirPower Wiring FI9/FI10 Basic Wiring Diagram with ChargingFI9/FI10 Basic Wiring Diagram without Charging FI12 Basic Wiring Diagram with Charging FI12 Basic Wiring Diagram without Charging FI13 Basic Wiring Diagram with Charging FI13 Basic Wiring Diagram without Charging FI14 Basic Wiring Diagram with Charging FI14 Basic Wiring Diagram without Charging Power Connections DC Supply and Motor CablesCable Types Required to Meet Standards Fuses, 465 800V DC InvertersInformation about fuses Fuses, 640 1100V DC InvertersFuses Used in 640 1100V DC Inverters Inverter Supply and Motor Cables 380 500V AC Cable Sizes for 380 500V ACTerminal Sizes 380 500V AC Terminal Sizes for 380 500V ACInverter Supply and Motor Cables 525 690V AC Cable Sizes for 525 690V ACTerminal Sizes 525 690V AC Terminal Sizes for 525 690V ACDistance Between Cables Shielded Inches m Cable in Feet m Installation InstructionsCable Distances Frame Sizes Cable Installation and the UL Standards Cable and Motor Insulation ChecksTerminal Tightening Torques Tightening TorqueSeptember Control Wiring Control BoardControl Wiring Details Inverters Connected in ParallelOption Board A9 Wiring Diagram Terminal Screw Tightening Torque Lb-in Control CablesTightening Torques of Option Board Terminals Galvanic Isolation Barriers Galvanic Isolation BarriersControl I/O Terminal Signals on Option Board A9 Terminal Signal Technical InformationControl I/O Terminal Signals on Option Board A3 Digital Input Signal InversionsControl I/O Terminal Signals on Option Board A2 Jumper Selections on Option Board A9 10 Jumper Blocks on Option Board A911 Jumper Selection for Option Board A9 September Keypad Operation Indicators on the Keypad DisplayMenu Information Drive Status Indicators Drive Status IndicatorsControl Place Indicators Control Place IndicatorsKeypad Pushbuttons Status LEDs Green Green RedStatus LEDs Green Green Red Text LinesButton Descriptions Menu Navigation Keypad Display DataKeypad Navigation Chart Monitoring Menu M1 Monitoring MenuMonitored Signals Parameter Menu M2Parameter Value Change Procedure Keypad Control Menu M3Selection of Control Place Selection of Control Place Keypad ReferenceStop Button Activated Active Faults Menu M4Keypad Direction Fault Time Data Record Fault Type Symbol MeaningFault Time Recorded Data Fault History Menu M5Real Time Record Data Units Description10 Fault History Menu System Menu M6Code Function Min Max Unit Default Cust Selections 10 System Menu Functions10 System Menu Functions Selection of Language 11 Selection of Language Application SelectionUpload parameters to keypad To keypad, S6.3.2 Copy ParametersParameter Sets S6.3.1 Automatic Parameter Backup P6.3.4 Download parameters to drive From keypad, S6.3.3Parameter Comparison 15 Parameter ComparisonSafety Password S6.5.1Parameter Lock P6.5.2 Start-Up Wizard P6.5.3Default Page P6.6.1 Multimonitoring Items P6.5.4Default page in the operating menu P6.6.2 Timeout Time P6.6.3Contrast Adjustment P6.6.4 Backlight Time P6.6.5Hardware Settings Internal Brake Resistor Connection P6.7.1HMI Acknowledge Timeout P6.7.3 Fan Control P6.7.2Number of retries to receive HMI acknowledgement P6.7.4 System infoTotal Counters 11 Counter Pages12 Resettable Counters Trip CountersSoftware S6.8.3 13 Software Information PagesApplications S6.8.4 14 Applications Information PagesHardware S6.8.5 15 Hardware Information PagesExpander Boards S6.8.6 Expander Board Menu M7Code Parameter Min Max Default Cust Selections Further Keypad FunctionsSeptember Safety Precautions Start-UpSequence of Operation September September Fault Code Possible Cause Solution Appendix a Fault CodesTable A-1 Fault Codes Eeprom Programmable Faults only Table A-1 Fault Codes September MN04004002E September Page Company Information

SPI9000 specifications

The Eaton Electrical SPI9000 is a cutting-edge power management system designed to enhance efficiency and reliability in electrical distribution. This state-of-the-art solution integrates advanced technologies to optimize performance, making it an ideal choice for various industrial and commercial applications.

One of the standout features of the SPI9000 is its scalability. Businesses can easily adapt the system to meet their unique power needs, whether for a single facility or multiple sites. This flexibility is crucial in today's fast-paced environment, where operational demands can shift rapidly. The system is engineered to grow alongside your business, providing robust power management as requirements evolve.

At the heart of the SPI9000 is its intelligent monitoring capability. The system utilizes real-time data analytics to monitor energy consumption, detect anomalies, and predict maintenance needs. This proactive approach not only helps in reducing downtime but also cultivates a culture of energy efficiency within organizations. By leveraging insights derived from data, companies can make informed decisions that lead to significant cost savings.

The SPI9000 incorporates advanced communications technology, allowing seamless integration with existing building management systems. This interoperability is vital for creating smart grids and enhancing overall control of electrical networks. Additionally, the system supports various communication protocols, including Modbus, BACnet, and Ethernet, ensuring compatibility with a wide range of devices and applications.

Safety is paramount in any electrical system, and the SPI9000 excels in this regard. It features enhanced protective measures, including overcurrent protection, short-circuit protection, and arc flash detection, ensuring the safety of both personnel and equipment. These safety features not only safeguard investments but also contribute to creating a safer working environment.

Energy efficiency is another cornerstone of the SPI9000 design. The system is equipped with advanced power quality monitoring features, which help identify and mitigate issues related to harmonics, voltage sags, and swells. By maintaining optimal power quality, the SPI9000 ensures that equipment operates efficiently, extending its lifespan while reducing energy costs.

In summary, the Eaton Electrical SPI9000 is a versatile and efficient power management solution that brings together scalability, intelligent monitoring, advanced communication capabilities, enhanced safety features, and energy efficiency. Thanks to its innovative technologies and characteristics, the SPI9000 serves as an indispensable tool for modern businesses seeking to streamline their electrical operations and enhance their energy management strategies.