SPX Cooling Technologies TG MAG86-100, TG MAG185-125 Circulation pump, Sealing rings and gaskets

Page 24

The rear axial bearing is mounted in the hub for the inner magnetic rotor, and the front axial bearing is actually part of the circulation pump supplying lubrication and cooling for the magnetic drive.

Materials rotor bearing assembly

Metal parts:

1.4460 / duplex steel

Shaft sleeve:

Silicon carbide

Axial bearing faces:

Silicon carbide

Radial bearing bushes:

Option (Q) silicon carbide

 

Option (C) carbon

3.16.3 Circulation pump

To ensure proper lubrication of the rotor bearings and cooling of the magnetic coupling a circulation pump is providing a controlled flow over the magnetic drive. The liquid is flowing from the discharge side of the pump via holes and grooves in the bearing assembly and the magnetic drive back to the suction side of the pump. This circulation pump is designed as an internal gear pump where the drive gear, integrated in the front axial bearing is driving a disk rotor which is rotating in an insert, situated between rotor and intermediate cover. The insert and the complete rotor bearing assembly are mounted on the intermediate cover.

Shaft nut

Rear axial bearing +

Hub inner rotor

Intermediate cover

Disk rotor

Insert

Front axial bearing +

Gear of circulation pump

 

Rotor shaft

Material circulation pump parts

Pump gear:

1.4460 duplex steel

Disk rotor:

PEEK

Insert:

1.4460 duplex steel

3.16.4 Sealing rings and gaskets

The magnetic drive replaces a dynamic shaft sealing, so there are only static seals on TopGear MAG pumps. The intermediate cover, separation can and pump cover are sealed with O-rings. Standard O-ring material is FPM, but other O-ring materials can be supplied on request. The maximum allowable operating temperature and chemical resistance must be considered for selection of the O-ring material.

Max. allowable temperature for FPM (Fluorcarbon) = 200 °C

The topcover/safety relief valve is sealed with a graphite gasket and following sealing rings are used to seal plugs:

Cast iron pump casing parts: Stainless steel casing parts:

Steel sealing rings with asbestos-free filling PTFE sealing rings

24

A.0500.551 – IM-TGMAG/02.00 EN (02/2008)

Image 24
Contents TopGear MAG EC-Declaration of conformity Contents Rotor bearing assembly InstallationGuidelines for assembly Cleaning the pumpInstructions for re-using and disposal 20.1.1 Maintenance instructionsClearance adjustment Designation of threaded connections 20.1.2Hydraulic part Bearing bracket Jacket options Pump cover and intermediate cover SSPump cover and intermediate cover TT Pump cover and without jackets on intermediate cover TOCGeneral Reception, handling and storageReception HandlingSafety GeneralInstallation Pump unitsPump unit handling Disassembly/assembly of the coupling guard Before commissioning the pump unitName plate CE Declaration of Conformity Quantity Symbol Unit Technical conventionsDifferential pressure = bar Maximum pressure at discharge flange design pressure = barType designation ExamplePump family code TG = TopGear Pump range name Jacket options for pump cover 0 Pump cover without jacketsIdler bush and idler materials Idler pin materialsBushes on shaft materials Rotor and shaft materialsPump standard parts Operating principleSafety relief valve Working principle SoundGeneral performance Self-priming operationMain characteristics PressureSound level Sound level of a pump without driveSound level of the pump unit Maximum and minimum allowable temperature Jacket optionsInternals InfluencesMaximum temperature of internals Operation under hydrodynamic lubrication conditionsMaximum torque of pump shaft and rotor material combination Hyd = design constant for each pump sizeMass moment of inertia Axial and radial clearancesExtra clearances Inner partsPlay between gear teeth Maximum size of solid particlesDiametral clearance on pin / idler bearing Components of the magnetic drive Magnetic couplingRotor bearing assembly Maximum allowable temperature and nominal torqueSamarium Cobalt SmCo 280C Neodymium Iron Boron NdFeB 120 C BelowMaterials rotor bearing assembly Circulation pumpSealing rings and gaskets Material circulation pump partsSafety relief valve Safety relief valve heated spring casingMaterials Working pressure classDefinition and working principle MaterialsPressure HeatingSafety relief valve Relative adjustment Spring ratio Safety relief valveSingle safety relief valve Sectional drawings and part listsInstallation Heated spring casingAccessibility Outdoor installationIndoor installation LocationDrives StabilityStarting torque Radial load on shaft endCheck after connecting whether the shaft can move freely Shaft rotationSuction and discharge pipes Forces and momentsPiping Isolating valvesSuction piping Self-priming operationSecondary piping StrainerDrain lines Heating jacketsGuidelines for assembly Transport of pump unitFoundation pump unit Jacket on pump coverCombustion engines Shaft couplingCheck temperature censor on can Guarding of moving partsAlignment tolerances Belt driveCleaning the pump Cleaning suction lineInstructions for start-up Venting and fillingChecklist Initial start-up Start-upShut-down Abnormal operationTrouble shooting Tion Maintenance instructions Instructions for re-using and disposalPreparation Motor safety External cleaningTools Shut-downSpecific components Fluid circuitsNuts and bolts Plastic or rubber componentsClearance adjustment Front pull-outBack pull-out 0600 8120 8110 8100 4000 0701 0040 0010 Designation of threaded connections Threaded connection Rp example Rp 1/2Threaded connection G example G 1/2 Disassembly Disassembly of front-pull-out assemblyDisassembly of top cover 0100 or safety relief valve Disassembly of bearing bracketTake off top cover 0100 or safety relief valve Removal of bearing bracketDisassembly of pump shaft complete Disassembly of outer magnetic rotorRemoval of ball bearings Disassembly of separation can Disassembly of back-pull-out assemblyUn-tighten cap head screws 8460 and remove them Take out O-rings 81308310 8520 8510 8500 8350-D 8400 0701 Assembly Assembly of bearing bracketTake care not to damage the outer rotor magnet Pre-assembly of the back-pull-out Adjustment of the axial clearanceCirculation pump Mount axial bearing 8350-A into the insertAssembly of rotor shaft Axial clearance Assembly of the back-pull-out assembly to the pump casing Assembly of the separation canAssembly of the bearing bracket Assembly of the front-pull-out assemblyMount bearing bracket support 1700 to the bearing bracket Measure the distances as indicated on the sketchAssembly of top cover 0100 or safety relief valve On the pump cover 4000 with tap boltsTighten tap bolts 1010 crosswise with Specified torque How to order spares TG MAG15-50 toTG MAG185-125 Hydraulic part Bearing bracketJacket options Jackets on pump coverJackets on intermediate cover 0220 0200 0310 0250 0240 0300 0320 0230 0210 Dimensional drawings TG MAG15-50 to 185-125 pumpsFlange connections Cast ironStainless steel Jackets Safety relief valves Jackets dimensionsSingle safety relief valve Heated safety relief valve Dv dkWeights Mass Bracket supportCopyright 2008 SPX Corporate

TG MAG86-100, TG MAG23-65, TG MAG58-80, TG MAG15-50, TG MAG185-125 specifications

SPX Cooling Technologies has established itself as a leader in the design and manufacturing of cooling systems, offering a wide range of products tailored to meet specific industrial and commercial needs. Among its impressive lineup, the TG MAG series stands out, featuring models such as TG MAG185-125, TG MAG23-65, TG MAG86-100, TG MAG58-80, and TG MAG15-50. Each of these models combines innovative technology with robust performance characteristics, making them ideal choices for various applications.

The TG MAG185-125 model is designed for high-capacity cooling requirements, offering exceptional thermal performance while maintaining energy efficiency. Its advanced fan design minimizes noise levels, making it suitable for installations in noise-sensitive areas. Furthermore, the unit benefits from a corrosion-resistant construction, ensuring longevity and reliable operation in diverse environments.

For smaller applications, the TG MAG23-65 provides a compact solution without compromising on performance. This unit features a space-efficient design and utilizes high-efficiency fans that optimize airflow, thereby enhancing overall cooling efficiency. The integrated digital controls allow for precise temperature management, making it easy for operators to monitor and adjust settings as needed.

The TG MAG86-100 model serves as an ideal middle-ground solution, balancing capacity and efficiency. It incorporates state-of-the-art technology, such as variable speed drives, which adjust the fan speed based on cooling demand, resulting in significant energy savings. The design also promotes easy maintenance, with accessible components that facilitate regular servicing and inspections.

For medium-scale needs, the TG MAG58-80 combines durability with performance, featuring a robust frame that can withstand harsh operational conditions. Its efficient heat exchange technology maximizes cooling output while minimizing energy consumption. Moreover, the enhanced airflow system ensures uniform cooling across the entire unit.

Lastly, the TG MAG15-50 is perfect for smaller spaces where cooling requirements are less demanding. Despite its size, this model is equipped with cutting-edge features such as a compact structure and highly efficient cooling mechanisms to ensure effective performance. The easy installation process and low maintenance needs further enhance its appeal.

Overall, the TG MAG series provides a range of innovative cooling solutions tailored to meet diverse industrial requirements, characterized by efficiency, durability, and advanced technology, ensuring optimal performance across all operating conditions.