SPX Cooling Technologies TG MAG23-65, TG MAG185-125 Piping, Isolating valves, Suction piping

Page 33

3.18.5.2Piping

Use piping with a diameter equal to or greater than the connection ports of the pump and with the shortest possible lengths.

The pipe diameter has to be calculated in function of the liquid parameters and the installation parameters. If necessary use larger diameters to limit pressure losses.

If the fluid to be pumped is viscous, pressure losses in the suction and discharge lines may increase considerably. Other piping components like valves, elbows, strainers, filters and foot valve also cause pressure losses.

Diameters, length of piping and other components should be selected in such a way that the pump will operate without causing mechanical damage to the pump/pump unit, taking into account the minimum required inlet pressure, the maximum allowable working pressure and the installed motor power and torque.

Check the tightness of the pipes after connection.

Suction piping

Liquids should enter the pump from a level higher than the pump level, the inclining pipe should rise upwards towards the pump without any air pockets.

A too small diameter or a too long suction pipe, a too small or blocked strainer will increase pressure losses so that the NPSHa (NPSH available) becomes smaller than the NPSH (NPSH required).

Cavitation will occur, causing noise and vibrations. Mechanical damage to pump and pump unit may occur.

When a suction strainer or filter is installed pressure losses in the suction line must be checked constantly. Also check if the inlet pressure at the suction flange of the pump is still sufficiently high.

Self-priming operation

At the start sufficient liquid must be available in the pump filling up the internal clearance volume and the dead spaces, allowing the pump to build up a pressure difference.

Therefore, for pumping low viscosity fluids, a foot valve with the same or larger diameter than the suction pipe must be installed or the pump can be installed without foot-valve but in U-line.

Note! A foot valve is not recommended when pumping high viscous liquids.

To remove air and gases from suction line and pump, counter pressure at the discharge side must be reduced. In case of self-priming operation, start-up of the pump should be performed with open and empty discharge line allowing air or gases to escape at low backpressure.

Another possibility in case of long lines or when a non-return valve is installed in the discharge line, is to install a by-pass with isolating valve close to the discharge side of the pump. This valve will be opened in case of priming and allows air or gas evacuation at low backpressure.

The bypass should be lead back to the supply tank – not to the suction port.

3.18.5.3Isolating valves

To allow proper maintenance it is necessary to be able to isolate the pump. Isolation can be done by installing valves in suction and discharge lines.

These valves must have a cylindrical passage of the same diameter of the piping (full bore). (Gate or ball valves are preferable).

When operating the pump, the valves must be opened completely. The output must never be regulated by means of closing valves in suction or discharge pipes. It must be regulated by changing shaft speed or by re-routing the media over a by-pass back to the supply tank.

Discharge

By-pass

Suction

Piping

A.0500.551 – IM-TGMAG/02.00 EN (02/2008)

33

Image 33
Contents TopGear MAG EC-Declaration of conformity Contents Installation Rotor bearing assemblyGuidelines for assembly Cleaning the pumpMaintenance instructions Instructions for re-using and disposal 20.1.1Clearance adjustment Designation of threaded connections 20.1.2Pump cover and intermediate cover SS Hydraulic part Bearing bracket Jacket optionsPump cover and intermediate cover TT Pump cover and without jackets on intermediate cover TOCReception, handling and storage GeneralReception HandlingGeneral SafetyInstallation Pump unitsPump unit handling Disassembly/assembly of the coupling guard Before commissioning the pump unitName plate CE Declaration of Conformity Technical conventions Quantity Symbol UnitDifferential pressure = bar Maximum pressure at discharge flange design pressure = barExample Type designationPump family code TG = TopGear Pump range name Jacket options for pump cover 0 Pump cover without jacketsIdler pin materials Idler bush and idler materialsBushes on shaft materials Rotor and shaft materialsOperating principle Pump standard partsSound Safety relief valve Working principleGeneral performance Self-priming operationPressure Main characteristicsSound level Sound level of a pump without driveSound level of the pump unit Jacket options Maximum and minimum allowable temperatureInternals InfluencesOperation under hydrodynamic lubrication conditions Maximum temperature of internalsMaximum torque of pump shaft and rotor material combination Hyd = design constant for each pump sizeAxial and radial clearances Mass moment of inertiaExtra clearances Inner partsPlay between gear teeth Maximum size of solid particlesDiametral clearance on pin / idler bearing Magnetic coupling Components of the magnetic driveMaximum allowable temperature and nominal torque Rotor bearing assemblySamarium Cobalt SmCo 280C Neodymium Iron Boron NdFeB 120 C BelowCirculation pump Materials rotor bearing assemblySealing rings and gaskets Material circulation pump partsSafety relief valve heated spring casing Safety relief valveMaterials Working pressure classMaterials Definition and working principlePressure HeatingSpring ratio Safety relief valve Safety relief valve Relative adjustmentSectional drawings and part lists Single safety relief valveHeated spring casing InstallationOutdoor installation AccessibilityIndoor installation LocationStability DrivesStarting torque Radial load on shaft endShaft rotation Check after connecting whether the shaft can move freelySuction and discharge pipes Forces and momentsIsolating valves PipingSuction piping Self-priming operationStrainer Secondary pipingDrain lines Heating jacketsTransport of pump unit Guidelines for assemblyFoundation pump unit Jacket on pump coverShaft coupling Combustion enginesGuarding of moving parts Check temperature censor on canAlignment tolerances Belt driveCleaning suction line Cleaning the pumpInstructions for start-up Venting and fillingStart-up Checklist Initial start-upAbnormal operation Shut-downTrouble shooting Tion Maintenance instructions Instructions for re-using and disposalPreparation External cleaning Motor safetyTools Shut-downFluid circuits Specific componentsNuts and bolts Plastic or rubber componentsClearance adjustment Front pull-outBack pull-out 0600 8120 8110 8100 4000 0701 0040 0010 Designation of threaded connections Threaded connection Rp example Rp 1/2Threaded connection G example G 1/2 Disassembly of front-pull-out assembly DisassemblyDisassembly of bearing bracket Disassembly of top cover 0100 or safety relief valveTake off top cover 0100 or safety relief valve Removal of bearing bracketDisassembly of pump shaft complete Disassembly of outer magnetic rotorRemoval of ball bearings Disassembly of back-pull-out assembly Disassembly of separation canUn-tighten cap head screws 8460 and remove them Take out O-rings 81308310 8520 8510 8500 8350-D 8400 0701 Assembly of bearing bracket AssemblyTake care not to damage the outer rotor magnet Adjustment of the axial clearance Pre-assembly of the back-pull-outCirculation pump Mount axial bearing 8350-A into the insertAssembly of rotor shaft Axial clearance Assembly of the separation can Assembly of the back-pull-out assembly to the pump casingAssembly of the front-pull-out assembly Assembly of the bearing bracketMount bearing bracket support 1700 to the bearing bracket Measure the distances as indicated on the sketchAssembly of top cover 0100 or safety relief valve On the pump cover 4000 with tap boltsTighten tap bolts 1010 crosswise with Specified torque How to order spares TG MAG15-50 toTG MAG185-125 Bearing bracket Hydraulic partJacket options Jackets on pump coverJackets on intermediate cover 0220 0200 0310 0250 0240 0300 0320 0230 0210 TG MAG15-50 to 185-125 pumps Dimensional drawingsFlange connections Cast ironStainless steel Jackets Safety relief valves Jackets dimensionsSingle safety relief valve Dv dk Heated safety relief valveBracket support Weights MassCopyright 2008 SPX Corporate

TG MAG86-100, TG MAG23-65, TG MAG58-80, TG MAG15-50, TG MAG185-125 specifications

SPX Cooling Technologies has established itself as a leader in the design and manufacturing of cooling systems, offering a wide range of products tailored to meet specific industrial and commercial needs. Among its impressive lineup, the TG MAG series stands out, featuring models such as TG MAG185-125, TG MAG23-65, TG MAG86-100, TG MAG58-80, and TG MAG15-50. Each of these models combines innovative technology with robust performance characteristics, making them ideal choices for various applications.

The TG MAG185-125 model is designed for high-capacity cooling requirements, offering exceptional thermal performance while maintaining energy efficiency. Its advanced fan design minimizes noise levels, making it suitable for installations in noise-sensitive areas. Furthermore, the unit benefits from a corrosion-resistant construction, ensuring longevity and reliable operation in diverse environments.

For smaller applications, the TG MAG23-65 provides a compact solution without compromising on performance. This unit features a space-efficient design and utilizes high-efficiency fans that optimize airflow, thereby enhancing overall cooling efficiency. The integrated digital controls allow for precise temperature management, making it easy for operators to monitor and adjust settings as needed.

The TG MAG86-100 model serves as an ideal middle-ground solution, balancing capacity and efficiency. It incorporates state-of-the-art technology, such as variable speed drives, which adjust the fan speed based on cooling demand, resulting in significant energy savings. The design also promotes easy maintenance, with accessible components that facilitate regular servicing and inspections.

For medium-scale needs, the TG MAG58-80 combines durability with performance, featuring a robust frame that can withstand harsh operational conditions. Its efficient heat exchange technology maximizes cooling output while minimizing energy consumption. Moreover, the enhanced airflow system ensures uniform cooling across the entire unit.

Lastly, the TG MAG15-50 is perfect for smaller spaces where cooling requirements are less demanding. Despite its size, this model is equipped with cutting-edge features such as a compact structure and highly efficient cooling mechanisms to ensure effective performance. The easy installation process and low maintenance needs further enhance its appeal.

Overall, the TG MAG series provides a range of innovative cooling solutions tailored to meet diverse industrial requirements, characterized by efficiency, durability, and advanced technology, ensuring optimal performance across all operating conditions.