Lochinvar 497 - 2067 service manual Installation with a chilled water system, Boiler flow rate

Page 35

4 Water connections (continued)

Installation with a chilled water system

Pipe refrigeration systems in parallel. Install duct coil downstream at cooling coil. Where the hot water heating boiler is connected to a heating coil located in the air handling units which may be exposed to refrigeration air circulation, the boiler piping system must be equipped with flow control valves or other automatic means to prevent gravity circulation of the boiler water during the cooling cycle.

The coil must be vented at the high point and hot water from the boiler must enter the coil at this point. Due to the fast heating capacity of the boiler, it is not necessary to provide a ductstat to delay circulator operation. Also, omit thermostat flow checks as the boiler is cold when heating thermostat is satisfied. This provides greater economy over maintaining standby heat.

Installation & Service Manual

TABLE - 4C

BOILER TEMPERATURE RISE AT MAXIMUM FLOW Temperature Rise at Full Rate Fire, 55 and 90 GPM Maximum Flow

Model

Temperature Rise °F

497

15 @ 55 GPM

647

20 @ 55 GPM

747

23 @ 55 GPM

987

19 @ 90 GPM

1257

24 @ 90 GPM

 

 

1437

27 @ 90 GPM

1797

34 @ 90 GPM

2067

39 @ 90 GPM

Typical heating boiler installations

General plumbing rules:

1.Check all local codes.

2.For serviceability of boiler, always install unions.

3.Always pipe pressure relief valve to an open drain.

4.Locate system air vents at highest point of system.

5.Expansion tank must be installed near the boiler and on the suction side of the system pump.

6.Support all water piping.

Boiler flow rate

CAUTION The maximum flow rate for Models 497- 747 is 55 GPM and 90 GPM on Models

987 - 2067. Do not exceed the maximum flow rate of the heating boiler. If higher flow rates are required through the boiler, an optional Cupro-Nickel heat exchanger is available. When using a Cupro-Nickel heat exchanger, GPM can be increased by 30 percent. Consult the factory for specific application requirements.

The heat exchanger is generally capable of operating within the design flow rates of the building heating system. Should the flow rate exceed the maximum allowable flow rate through the boiler an external bypass must be installed. The bypass should be fully sized with a balancing valve to allow for proper adjustment of flow. Flow rate can be determined by measuring the temperature rise through the boiler.

35

Image 35
Contents Save this manual for future reference What to do if YOU Smell GASContents Checking equipment WarrantyPlease read before proceeding Special instructionsCodes Safety informationOwner warning Prevention of freezingCopper-fin How it works Copper-fin How it works Models 987 2067 Front View Models 987 2067 Rear View Copper-fin =B=R Rating RatingsCopper-fin Specifications Indoor clearances from combustible construction InstallationDetermine unit location Locating the unitPump operation Outdoor boiler installationShut-down and draining Freeze protectionNumber Freeze Protection for a Heating Boiler System if requiredCombustion and Ventilation Air Minimum Recommended Combustion AIR Supply to Equipment RoomCombustion air filter 3Combustion air filter Models 497Outside Combustion Air, No Ducts Outside Combustion Air, Using DuctsCombustion Air Options Combustion Air from an Interior Space Exhaust FansVertical vent termination clearances and location VentingGeneral information Venting supportFlue Pipe Sizes Model Flue Size Vent system optionsBarometric damper location Common venting systems Conventional negative draft ventingNegative draft Flue outlet pipingInspection of a masonry chimney Masonry chimney installationOutdoor vent/air inlet location Outdoor installation ventingOutdoor Vent Kits Model Pump Cover Without Pump Cover Outdoor vent kitInlet GAS Pressure Natural Model Connecting to gas supply Gas pipingGas connections Gas pressure testFittings to Equivalent Straight Pipe Suggested GAS Pipe Size for Single Unit InstallationsGas connection Gas train and controlsChecking gas supply pressure GAS Piping Size ChartCombination gas valves Venting of combination gas valves3Measuring gas supply pressure at combination gas valve Gas manifold pressure adjustmentNat. Gas 4Measuring manifold gas pressureWater connections Boiler circulator requirements Pressure Drop ChartWater connections heating boilers only Run Cycle Output Minimum System Load Temp. Rise 8.33 60 Min Minimum boiler water temperaturesLow system water volume LTV Valve Kits Model LTV Valve KIT Low temperature return water systemsSystem Temperature Rise Chart Radiant floor and snow melt heating systemsCommon Manifold Size Min Models 987 Number of Units Common Manifold Size Min Models 497 Number of UnitsGPM Diameter6Primary/secondary piping of multiple boilers 7Boiler with low temperature bypass 8Primary/secondary piping with buffer tank General plumbing rules Installation with a chilled water systemTypical heating boiler installations Boiler flow rateWater treatment Temperature / pressure gaugeBoiler bypass requirements Filling the systemVAC Connecting to electrical supplyElectrical connections AMP Draw DataTerminal strip connection options BurnersOJ1 OJ2 Temperature adjustmentLocating the temperature control Temperature control settingsOutdoor reset option Boiler application Temperature control sensorsRemote sensor for pump delay Placement of sensorsHot surface igniter and ignition control module Remote Wire Connection Wire Gauge Max. Allowable LengthHot surface ignition system Remote mounting of a sensorIgnition and control timings Diagnostic Status IndicationSix Operation and diagnostic lightsSequence Constant Ignition Stage 2 onOFF StartupPurge air from water system Freeze protection when usedCheck/control water chemistry Fill and test water systemStart the boiler Check for gas leaksCheck thermostat circuits Check vent and air pipingMaximum Water Flow Domestic water heatersWater velocity control Initial set-up of maximum water flow1Typical water heater piping with storage tank 2Single water heater piping with two storage tanks Models 497 Number of Units Common Manifold Size Min4Multiple water heater piping with multiple storage tanks Water chemistry Required temperature risePipe Sizing Chart 497 987 Pipe size requirementsHeat exchanger Potable hot water temperature control settingsDomestic water temperature Minimum pump performanceLocation of cold water supply piping connections Cathodic protection High water temperature limit controlOptional relief valve Thermal expansionMaintenance Combustion and ventilation air Adjustment procedure Models 497 Overview Sequence of operationServicing a hot surface igniter and ignition module Ignition system checkoutEnd of sequence Heat transfer processGlossary Hi-Lo Fire Relay Pump Delay Electronic Thermostat FunctionTrial for Ignition Ignition Module Function Igniter Controlled by Ignition ModuleLadder diagram DiagramsDiagrams Connection diagram Connection diagram

497 - 2067 specifications

Lochinvar 497 - 2067 is a highly efficient and versatile condensing boiler that is designed to meet the diverse heating needs of residential and commercial applications. Known for its impressive performance and advanced technology, the Lochinvar 497 - 2067 has garnered a reputation as a reliable choice among heating professionals.

One of the standout features of the Lochinvar 497 - 2067 is its impressive thermal efficiency. The boiler boasts an efficiency rating of up to 95% AFUE (Annual Fuel Utilization Efficiency), allowing users to significantly reduce their energy costs while minimizing environmental impact. This efficiency is facilitated by its innovative condensing technology, which captures and reuses heat from exhaust gases for optimal performance.

The Lochinvar 497 - 2067 is equipped with a robust stainless steel heat exchanger designed to handle high temperatures and ensure long-lasting performance. The heat exchanger’s design maximizes heat transfer, while its corrosion-resistant properties guarantee durability over time. This contributes to the boiler's overall longevity and serviceability, reducing the need for frequent replacements.

Control is another critical feature of the Lochinvar 497 - 2067. The boiler comes with an advanced control system that enables easy management of system operations. Users can take advantage of features such as outdoor reset control, which adjusts the temperature of the boiler based on external weather conditions, enhancing system efficiency and comfort.

In terms of safety, the Lochinvar 497 - 2067 incorporates several cutting-edge safety features, including a flame detection system and multiple safety shut-off devices. These safeguards help to ensure the safe operation of the boiler, providing peace of mind to users and heating professionals alike.

Another important characteristic is the compact design of the Lochinvar 497 - 2067, which allows for flexible installation in various settings, including tight spaces. Its lightweight structure further simplifies the installation process, making it a practical choice for contractors.

In summary, the Lochinvar 497 - 2067 is an exceptional high-efficiency condensing boiler that combines advanced technology, durability, and ease of use. With its impressive thermal efficiency, superior heat exchanger design, advanced control systems, and enhanced safety measures, it stands out as a top choice for those seeking reliable heating solutions. This boiler not only meets but exceeds modern demands for energy efficiency and performance, solidifying its position in the market.