Lochinvar 497 - 2067 service manual Hot surface ignition system, Remote mounting of a sensor

Page 42

Installation & Service Manual

5 Electrical connections

Remote mounting of a sensor

You must mount the outside air temperature sensor outside the building. To mount remote sensors, follow the guidelines below. Take care to correctly wire sensors to the unit. Erratic temperature readings can be caused by poor wiring practices. Twist the wires between the unit and the remote sensor. Turn wires at least three or four turns per linear foot of wiring. This provides common mode rejection of some types of electrical interferences.

1.Do not route temperature sensor wiring with building power wiring.

2.Do not locate temperature sensor wiring next to control contactors.

3.Do not locate temperature sensor wiring near electric motors.

4.Do not locate temperature sensor wiring near welding equipment.

5.Make sure good mechanical connections are made to the sensor, any interconnecting wiring and the controller.

6.Do not mount sensor with leadwire end pointing up in an area where condensation can occur.

7.Use shielded wiring to connect the sensor to the control when the possibility of an electrically noisy environment exists. Shielded cable is recommended on all cable runs of more than 25 feet in length.

Ground the cable shield at the connection

NOTICE to the boiler temperature control only. Do not ground the shielded cable at the sensor end.

To maintain temperature accuracy, sensor wires should be at least 18 AWG, see Table 5C.

TABLE 5C

Remote Wire Connection

Wire Gauge

Max. Allowable Length

 

 

12 GA

100 FT

14 GA

75 FT

16 GA

50 FT

18 GA

30 FT

Hot surface ignition system

Hot surface igniter and ignition control module

This unit has one ignition module and one hot surface igniter.

Figure 5-11_Hot surface igniter

CAUTION The igniter is extremely fragile, be very careful when removing. A faulty or damaged

hot surface igniter MUST BE replaced with a Lochinvar PLT3400 igniter. Do not use general purpose field replacement igniters.

Hot surface ignition control module

Ignition Module Lockout Functions

The ignition module may lockout in either a hard-lockout condition, requiring pushing of the reset button to recycle the control, or a soft-lockout condition which may recycle after an approximate five-minute waiting period. This soft- lockout condition is intended to allow self-correcting faults to correct themselves and permit normal operation. A typical hard-lockout fault is a flame failure condition. An ignition module that is in a hard-lockout condition may only be reset by pushing the reset button next to the ignition control or the “RESET” button on the diagnostic panel on the left end of the unit. Upon a flame failure, the reset button is only active after the control module has completed its post-purge cycle. Turning main power “OFF” and then “ON” or cycling the thermostat will not reset a hard-lockout condition. Wait five seconds after turning on main power before pushing the reset button when the ignition module is in a hard lockout. The ignition module will go into a soft lockout if conditions of low air, low voltage or low hot surface igniter current are present. A soft-lockout condition will operate the combustion air fans for the post purge cycle and then the ignition module will pause for approximately five minutes. At the end of this timed pause, the ignition module will attempt a new trial for ignition sequence. If the soft-lockout fault condition has subsided or has been corrected at the end of the timed pause, main burner ignition should be achieved with the resumption of the normal trial for ignition sequence. If the control sensed fault is not corrected, the ignition module will continue in the soft-lockout condition. If the electronic thermostat opens during the soft- lockout period, the ignition module will exit soft lockout and wait for a new call for heat from the thermostat. A soft-lockout condition may also be reset by manually cycling the thermostat or turning the main power switch “OFF” and then “ON” after the control sensed fault has been corrected.

42

Image 42
Contents What to do if YOU Smell GAS Save this manual for future referenceContents Special instructions WarrantyPlease read before proceeding Checking equipmentPrevention of freezing Safety informationOwner warning CodesCopper-fin How it works Copper-fin How it works Models 987 2067 Front View Models 987 2067 Rear View Ratings Copper-fin =B=R RatingCopper-fin Specifications Locating the unit InstallationDetermine unit location Indoor clearances from combustible constructionFreeze protection Outdoor boiler installationShut-down and draining Pump operationMinimum Recommended Combustion AIR Supply to Equipment Room Freeze Protection for a Heating Boiler System if requiredCombustion and Ventilation Air Number3Combustion air filter Models 497 Combustion air filterOutside Combustion Air, Using Ducts Combustion Air OptionsOutside Combustion Air, No Ducts Exhaust Fans Combustion Air from an Interior SpaceVenting support VentingGeneral information Vertical vent termination clearances and locationVent system options Barometric damper locationFlue Pipe Sizes Model Flue Size Flue outlet piping Conventional negative draft ventingNegative draft Common venting systemsMasonry chimney installation Inspection of a masonry chimneyOutdoor installation venting Outdoor vent/air inlet locationOutdoor vent kit Outdoor Vent Kits Model Pump Cover Without Pump CoverGas pressure test Connecting to gas supply Gas pipingGas connections Inlet GAS Pressure Natural ModelGas train and controls Suggested GAS Pipe Size for Single Unit InstallationsGas connection Fittings to Equivalent Straight PipeVenting of combination gas valves GAS Piping Size ChartCombination gas valves Checking gas supply pressureGas manifold pressure adjustment 3Measuring gas supply pressure at combination gas valve4Measuring manifold gas pressure Nat. GasWater connections Pressure Drop Chart Water connections heating boilers onlyBoiler circulator requirements Minimum boiler water temperatures Low system water volumeRun Cycle Output Minimum System Load Temp. Rise 8.33 60 Min Radiant floor and snow melt heating systems Low temperature return water systemsSystem Temperature Rise Chart LTV Valve Kits Model LTV Valve KITDiameter Common Manifold Size Min Models 497 Number of UnitsGPM Common Manifold Size Min Models 987 Number of Units6Primary/secondary piping of multiple boilers 7Boiler with low temperature bypass 8Primary/secondary piping with buffer tank Boiler flow rate Installation with a chilled water systemTypical heating boiler installations General plumbing rulesFilling the system Temperature / pressure gaugeBoiler bypass requirements Water treatmentAMP Draw Data Connecting to electrical supplyElectrical connections VACBurners Terminal strip connection optionsTemperature control settings Temperature adjustmentLocating the temperature control OJ1 OJ2Outdoor reset option Placement of sensors Temperature control sensorsRemote sensor for pump delay Boiler applicationRemote mounting of a sensor Remote Wire Connection Wire Gauge Max. Allowable LengthHot surface ignition system Hot surface igniter and ignition control moduleDiagnostic Status Indication Ignition and control timingsStage 2 on Operation and diagnostic lightsSequence Constant Ignition SixStartup OFFFill and test water system Freeze protection when usedCheck/control water chemistry Purge air from water systemCheck vent and air piping Check for gas leaksCheck thermostat circuits Start the boilerInitial set-up of maximum water flow Domestic water heatersWater velocity control Maximum Water Flow1Typical water heater piping with storage tank 2Single water heater piping with two storage tanks Common Manifold Size Min Models 497 Number of Units4Multiple water heater piping with multiple storage tanks Pipe size requirements Required temperature risePipe Sizing Chart 497 987 Water chemistryMinimum pump performance Potable hot water temperature control settingsDomestic water temperature Heat exchangerLocation of cold water supply piping connections Thermal expansion High water temperature limit controlOptional relief valve Cathodic protectionMaintenance Combustion and ventilation air Adjustment procedure Models 497 Ignition system checkout Sequence of operationServicing a hot surface igniter and ignition module OverviewHeat transfer process End of sequenceGlossary Igniter Controlled by Ignition Module Pump Delay Electronic Thermostat FunctionTrial for Ignition Ignition Module Function Hi-Lo Fire RelayDiagrams Ladder diagramDiagrams Connection diagram Connection diagram

497 - 2067 specifications

Lochinvar 497 - 2067 is a highly efficient and versatile condensing boiler that is designed to meet the diverse heating needs of residential and commercial applications. Known for its impressive performance and advanced technology, the Lochinvar 497 - 2067 has garnered a reputation as a reliable choice among heating professionals.

One of the standout features of the Lochinvar 497 - 2067 is its impressive thermal efficiency. The boiler boasts an efficiency rating of up to 95% AFUE (Annual Fuel Utilization Efficiency), allowing users to significantly reduce their energy costs while minimizing environmental impact. This efficiency is facilitated by its innovative condensing technology, which captures and reuses heat from exhaust gases for optimal performance.

The Lochinvar 497 - 2067 is equipped with a robust stainless steel heat exchanger designed to handle high temperatures and ensure long-lasting performance. The heat exchanger’s design maximizes heat transfer, while its corrosion-resistant properties guarantee durability over time. This contributes to the boiler's overall longevity and serviceability, reducing the need for frequent replacements.

Control is another critical feature of the Lochinvar 497 - 2067. The boiler comes with an advanced control system that enables easy management of system operations. Users can take advantage of features such as outdoor reset control, which adjusts the temperature of the boiler based on external weather conditions, enhancing system efficiency and comfort.

In terms of safety, the Lochinvar 497 - 2067 incorporates several cutting-edge safety features, including a flame detection system and multiple safety shut-off devices. These safeguards help to ensure the safe operation of the boiler, providing peace of mind to users and heating professionals alike.

Another important characteristic is the compact design of the Lochinvar 497 - 2067, which allows for flexible installation in various settings, including tight spaces. Its lightweight structure further simplifies the installation process, making it a practical choice for contractors.

In summary, the Lochinvar 497 - 2067 is an exceptional high-efficiency condensing boiler that combines advanced technology, durability, and ease of use. With its impressive thermal efficiency, superior heat exchanger design, advanced control systems, and enhanced safety measures, it stands out as a top choice for those seeking reliable heating solutions. This boiler not only meets but exceeds modern demands for energy efficiency and performance, solidifying its position in the market.