Intelligent Motion Systems Motion Detector Lead Stepping Motor Parallel Configuration

Page 32

NOTE: In calculating the maximum phase inductance, the

minimum supply output voltage should be used when using an unregulated supply.

Actual Inductance

Seen By the Driver

Specified Per Phase

Inductance

PHASE A

PHASE A

PHASE B

PHASE B

8 Lead Stepping Motor

Series Configuration

(Note: This exampl e a lso applies to the 6 lead motor full copper con￿guration and to 4 lead stepping motors)

Actual Inductance

Seen By the Driver

Specified Per Phase

Inductance

PHASE A

PHASE A

PHASE B

PHASE B

8 Lead Stepping Motor

Parallel Configuration

(Note: This exampl e a lso applies to the 6 lead motor half copper con￿guration)

AB

Figure 2.3.1 A & B: Per Phase Winding Inductance

The per phase winding inductance specified may be different than the per phase inductance seen by your MForce PowerDrive driver depending on the wiring configuration used. Your calculations must allow for the actual induc- tance that the driver will see based upon the wiring configuration.

Figure 2.3.1A shows a stepper motor in a series configuration. In this configuration, the per phase inductance will be 4 times that specified. For example: a stepping motor has a specified per phase inductance of 1.47mH. In this configuration the driver will see 5.88 mH per phase.

Maximum Motor Inductance (mH per Phase) =

.2 X Minimum Supply Voltage

Figure 2.3.1B shows an 8 lead motor wired in parallel. Using this configuration the per phase inductance seen by the driver will be as specified.

Using the following equation we will show an example of sizing a motor for a MForce PowerDrive used with an unregulated power supply with a minimum voltage (+V) of 18 VDC:

.2 X 18 = 3.6 mH

The recommended per phase winding inductance we can use is 3.6 mH.

Recommended IMS Motors

IMS also carries a series of 23 and 34 frame enhanced stepping motors that are recommended for use with the MForce PowerDrive. These motors use a unique relationship between the rotor and stator to generate more torque per frame size while ensuring more precise positioning and increased accuracy.

The special design allows the motors to provide higher torque than standard stepping motors while maintaining a steadier torque and reducing torque drop-off.

Each frame size is available in 3 stack sizes, single or double shaft, with or without encoders. They handle currents up to 2.4 Amps in series or 6 Amps parallel, and holding torque ranges from 90 oz.-in. (M-2218-2.4) to 1303 oz.-in (M- 3447-6.3) (64 N-cm to 920 N-cm).

These CE rated motors are ideal for applications where higher torque is required.

For more detailed information on these motors, please see the IMS Full Line catalog or the IMS web site at http://www.imshome.com.

12

Microstepping MForce PowerDrive Manual Revision R032008

Image 32
Contents Forcetm Microstepping MForce PowerDrive Product Manual Important information This page intentionally left blank Table Of Contents Appendices List of Figures List of Tables Stepping Motor Microstepping MForce PowerDriveMForce PowerDrive Front Connecting the Motor Connect Opto Reference and Logic InputsForcetm Intentionally Left Blank Introduction to the Microstepping MForce PowerDrive ConfiguringFeatures and Benefits Microstepping MForce PowerDrive Detailed Specifications General SpecificationsSetup Parameters Mechanical Specifications Dimensions in Inches mmPin Assignment and Description Pin # Function DescriptionP3 Connector DC Power, 2-Pin Locking Wire Crimp P4 Connector MotorPrototype Development Cable Options and AccessoriesParameter Setup Cable and Adapters Intentionally Left Blank Forcetm Microstepping MForce PowerDrive Manual Revision R032008 Mounting and Connection Guidelines Mounting RecommendationsLayout and Interface Guidelines Securing Power Leads and Logic LeadsMounting Hole Pattern Motor P4 Power P3Logic and SPI Communications P1 Intentionally Left Blank Interfacing DC Power Choosing a Power Supply for Your MForce PowerDriveDC Power Supply Recommendations ISP300-7 Unregulated Switching SupplyRecommended IMS Power Supplies IP804 Unregulated Linear SupplyExample a DC Power Cabling Under 50 Feet Basic DC Power ConnectionRecommended Power and Cable Configurations Transformer 10 to 28 VAC RMS for 48 VDC Systems Motor Selection and Interface Selecting a MotorWinding Inductance Types and Construction of Stepping MotorsLead Stepping Motor Parallel Configuration Recommended IMS MotorsFrame Enhanced 2.4A Not Available with Double Shaft Frame Enhanced 3.0AFrame Enhanced 6.0A Frame Enhanced 6.3APhase Connector Pin Lead MotorsPhase a MForce PowerDrive Phase Outputs Recommended Motor CablingMotor Connections Example a Motor Cabling Less Than 50 FeetExample B Motor Cabling Greater Than 50 Feet Recommended Motor Cable AWG SizesMicrostepping MForce PowerDrive Manual Revision R032008 Isolated Logic Input Pins and Connections Isolated Logic Input CharacteristicsEnable Input Logic Interface and ConnectionStep Clock DirectionQuadrature Up/DownSTEP/DIRECTION Timing Optocoupler Reference Optocoupler ReferenceNPN Open Collector Interface Sinking Input Connection ExamplesSwitch Interface Sinking Switch Interface ExampleMinimum Required Connections +V +12 to +48Connecting SPI Communications SPI Pins and Connections Logic Level Shifting and Conditioning CircuitSPI Master with Multiple Microstepping MForce PowerDrive 4 SPI Master with a Single Microstepping MForce PowerDriveColor Coded Parameter Values Using the IMS SPI Motor Interface InstallationConfiguration Parameters and Ranges View IMS SPI Motor Interface Menu OptionsFile Help UpgradeRecall Msel Microstep Resolution Select Msel Microstep Resolution SelectionConnected/Disconnected Indicator FactorySet ExitScreen 2 I/O Settings Configuration Screen Enable Active High/LowInput Clock Type Input Clock FilterFault Indication IMS Part Number/Serial Number ScreenIMS SPI Upgrader Screen Upgrade InstructionsInitialization Screen Port MenuMotor Settings Screen PWM Current Control PWM MaskMaximum PWM Duty Cycle % Parameter PWM Frequency Range ParameterExample PWM Settings By Motor Specifications PWM Control BitsCheck Sum Calculation for SPI Using User-Defined SPISPI Timing Notes SPI Commands and Parameters MSBWrite SPI Communications SequenceIntentionally Left Blank Appendices Intentionally Left Blank Adapter Cables MD-CC300-000 USB to SPI Parameter Setup CableOptional Prototype Development Cables Installation Procedure for the MD-CC300-000 Installing the Cable/VCP DriversFigure A.5 Hardware Update Wizard Screen Determining the Virtual COM Port VCP PD12-1434-FL3 Power, I/O and SPI Wire Color CodePrototype Development Cable PD02-2300-FL3 Prototype Development Cable PD04-MF34-FL3Warranty Excellence in Motion

Motion Detector specifications

Intelligent Motion Systems (IMS) Motion Detector is a cutting-edge device designed for advanced motion detection and automation applications. This state-of-the-art technology plays a crucial role in enhancing security systems, managing smart homes, and facilitating industrial automation. With a focus on reliability, efficiency, and real-time responsiveness, the IMS Motion Detector brings numerous advantages to users.

One of the main features of the IMS Motion Detector is its high sensitivity and precision in capturing motion. Utilizing advanced infrared (IR) and microwave sensing technologies, the device can detect movement with remarkable accuracy, even in challenging environmental conditions. This dual-sensing approach allows for greater versatility, minimizing false alarms while ensuring reliable detection of genuine movement.

The IMS Motion Detector is designed with energy efficiency in mind. Employing low-power consumption technologies, it is ideal for long-term installations, reducing the need for frequent battery replacements or energy costs. Furthermore, the device offers customizable settings, enabling users to adjust sensitivity levels, detection range, and operational modes according to specific needs. This adaptability makes the IMS Motion Detector suitable for a variety of applications, from residential to commercial settings.

Another notable characteristic of the IMS Motion Detector is its seamless integration capabilities. It can be easily incorporated into existing security systems or smart home networks, allowing users to monitor and control their environments through user-friendly applications. Compatibility with popular home automation platforms further enhances its utility, enabling users to create automated scenarios, such as turning on lights or sending alerts to mobile devices upon detecting motion.

The device is built to withstand various environmental factors, featuring weather-resistant housing for outdoor use. Its robust construction ensures durability while maintaining optimal performance over an extended period.

In summary, the Intelligent Motion Systems Motion Detector is a sophisticated device that stands out for its advanced detection technologies, energy efficiency, customizable settings, and seamless integration capabilities. Whether used for enhancing security or automating daily routines, the IMS Motion Detector represents a significant innovation in the realm of motion detection and management. Perfect for both residential and commercial applications, it ensures users can monitor their environments with confidence and ease.