Mitsubishi Electronics PUZ-A18NHA2-BS, PUZ-A42NHA2-BS, PUZ-A30NHA2, PUY-A36NHA2 Operating Procedure

Page 91

[Operating Procedure]

1Check the setting items provided by function selection.

If settings for a mode are changed by function selection, the functions of that mode will be changed accordingly. Check all the current settings according to steps 2 to 7, fill in the "Check" column in Table 1, then change them as necessary. For initial settings, refer to the indoor unit's installation manual.

2Switch off the remote controller.

A Hold down the FILTER (

mode is 15 to 28)and B TEST

buttons simultaneously for at least 2 seconds.

FUNCTION

will start to blink,

 

 

SELECTION

 

then the remote controller's display content will change as shown below.

Refrigerant address display section

3Set the outdoor unit's refrigerant address.

C Press the [ CLOCK] buttons ( and ) to select the desired refrigerant address. The refrigerant address changes from "00" to "15". (This operation is not possible for single refrigerant systems.)

*If the unit stops after FUNCTIONSELECTION blinked for 2 seconds or "88" blinks in the room temperature display area for 2 seconds, a transmission error may have occurred. Check to see if there are any sources of noise or interference near the transmission path.

Note : If you have made operational mistakes during this procedure, exit function selection (see step 0), then restart from step 2.

4Set the indoor unit number.

D Press the

ON/OFF button so that "- -" blinks in the unit number display

area.

 

Unit number display section

CPress the [ CLOCK] buttons ( and ) to select the unit number of the indoor unit for which you want to perform function selection. The unit number changes to "00", "01", "02","03",04" and "AL" each time a button is pressed.

* To set modes 01 to 06 or 15 to 22, select unit number "00".

E When the refrigerant address and unit number are confirmed by pressing the

* To set modes 07 to 14 or 23 to 28, carry out as follows:

MODE button, the corresponding indoor unit will start fan operation. This

To set each indoor unit individually, select "01" to "04".

To set all the indoor units collectively, select "AL".

helps you find the location of the indoor unit for which you want to perform function

5 Confirm the refrigerant address and unit number.

selection. However, if "00" or "AL" is selected as the unit number, all the indoor

units corresponding to the specified refrigerant address will start fan operation.

E Press the MODE button to confirm the refrigerant address and unit

Example) When the refrigerant address is set to 00 and the unit number is 02.

number.

After a while, "- - " will start to blink in the mode number display area.

 

00 refrigerant address

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mode number

 

 

 

 

 

Outdoor unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

display section

 

 

 

 

 

 

Indoor unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unit number 01

 

Unit number 02

 

 

 

 

 

 

 

 

Designate operation

 

 

 

 

 

 

Fan draft

 

 

 

 

 

 

 

 

 

 

 

 

 

* "88" will blink in the room temperature display area if the selected refrigerant

 

 

Remote controller

 

 

 

 

 

 

 

 

 

address does not exist in the system.

* When grouping different refrigerant systems, if an indoor unit other than the

Furthermore, if "F" appears and blinks in the unit number display area and the

one to which the refrigerant address has been set to perform fan operation,

refrigerant address display area also blinks, there are no units that corre-

there may be another refrigerant address that is the same as the specified one.

spond to the selected unit number. In this case, the refrigerant address and unit

In this case, check the DIP switch of the outdoor unit to see whether such a

number may be incorrect, so repeat steps 2 and 3 to set the correct ones.

refrigerant address exists.

 

 

6Select the mode number.

F Press the [

TEMP] buttons (

and

) to set the desired mode

Mode number

 

 

 

number.

 

 

 

display section

 

 

 

 

 

 

 

 

 

 

(Only the selectable mode numbers can be selected.)

 

 

Mode number 02 = Indoor temperature detection

 

 

 

 

 

 

7 Select the setting content for the selected mode.

 

F Press the [

TEMP] buttons (

and

) to select the desired setting

G Press the

MENU button. The currently selected setting number will

number.

 

 

 

blink, so check the currently set content.

 

 

 

 

 

 

Setting number display section

Setting number 1 = Indoor unit operating average

 

Setting number 3 = Remote controller built-in sensor

8Register the settings you have made in steps 3 to 7.

E Press the MODE button. The mode number and setting number will start to blink and registration starts.

The mode number and setting number will stop blinking and remain lit, indicating the end of registration.

*If " - - - " is displayed for both the mode number and setting number and " " blinks in the room temperature display area, a transmission error may have occurred. Check to see if there are any sources of noise or interference near the transmission path.

9If you wish to continue to select other functions, repeat steps 3 to 8.

0Complete function selection.

A Hold down the FILTER (

mode is 15 to 28) and TEST

buttons

* Do not operate the remote controller for at least 30 seconds after completing

function selection. (No operations will be accepted even if they are made.)

simultaneously for at least 2 seconds.

After a while, the function selection screen will disappear and the air condi- tioner OFF screen will reappear.

Note

If a function of an indoor unit is changed by function selection after installation is complete, make sure that a "" mark, etc., is given in the "Check" column of Table 1 to indicate the change.

91

Image 91
Contents Parts Catalog OCB429 ContentsIndoor Unit Reference ManualAlways Observe for Safety Safety PrecautionAdditional refrigerant charge When charging directly from cylinderR22 PUZ-A18NHA2 PUZ-A18NHA2-BS PUY-A12/18NHA2 PUY-A12/18NHA2-BS FeaturesPUZ-A42NHA2 PUZ-A42NHA2-BS PUY-A42NHA2 PUY-A42NHA2-BS PUZ-A18NHA2 PUZ-A24NHA2 PUZ-A30NHA2 PUZ-A36NHA2 PUZ-A42NHA2 SpecificationsPUY-A18NHA2-BS PUY-A24NHA2-BS Data Compressor Technical DataPUZ-A18NHA2-BS Noise Criterion CurvesHeat pump Standard Operation DataPKA-A12GA PKA-A18GA PKA-A24FA PKA-A30FA PKA-A36FA PLA-A42BA Cooling onlyUnit mminch Outdoor UnitExample of Notes 662-5/8 Air outlet Service SpaceNET Adapter Wiring DiagramNET Adapter PUZ-A24NHA2 PUZ-A24NHA2-BS PUY-A24NHA2 PUY-A24NHA2-BSWUse copper supply wires TABU/V/W System Simultaneous twin system Wiring SpecificationsOFF Separate Indoor UNIT/OUTDOOR Unit Power SuppliesIndoor Outdoor Connecting Cable Refrigerant address NET address Control Remote Controller NET Wiring MethodNET wiring NET address settingRefrigerant address setting Regulations in address settingsWay valve solenoid coil Heating on Cooling OFF Refrigerant System DiagramPUZ-A18NHA2 PUZ-A18NHA2-BS PUZ-A42NHA2 PUZ-A42NHA2-BSPUY-A42NHA2 PUY-A42NHA2-BS PUY-A12/18NHA2 PUY-A12/18NHA2-BSStart and finish of test run Refrigerant recovering pump downBefore test run TroubleshootingTroubleshooting Check Point Under Test RUNSymptoms in test run mode Cause Remote Controller Display Operating proceduresContents of inferior phenomena Test run for wireless remote controller When a Problem Occurs During Operation HOW to Proceed SELF-DIAGNOSISSelf-Diagnosis During Maintenance or Service ON/OFF Remote Controller DiagnosisCase of trouble during operation Malfunction-diagnosis method by wireless remote controllerMalfunction-diagnosis method at maintenance service ProcedureU9,UH Cndc Error Code Abnormal point and detection method Case63L connector open SELF-DIAGNOSIS Action TableIndoor/outdoor unit connector Error CodeCase Judgment and action 63H connector open Connector open63H worked Case Judgment and action High pressure High-pressure switchHigh discharging temperature Abnormalities detected while unit is operatingCase Judgment and action Open/short circuit of discharge Temperature thermistor TH4Temperature of heatsink Power moduleCase Judgment and action Outdoor fan motor Synchronous signal to main circuitWhen compressor locked Current sensor errorCase Judgment and action Low pressure 63L worked Remote controller transmissionErrorE0/signal receiving errorE4 Remote controller control boardNon defined error code Case Judgment and action Remote controller transmissionErrorE3/signal receiving errorE5 Error Signal receiving errorCase Judgment and action Address duplicate definition NET communication errorCase Judgment and action Pipe temperature Hardware error of transmissionTo the next Lossnay From the previousFresh Master MasterVCTF, VCTFK, CVV CVS, VVR, VVF, VCT Troubleshooting by Inferior PhenomenaPhenomena Factor Countermeasure Melans YES Please WaitMiswiring, breaking Outdoor power circuit boardPower supply To the outdoor unit Check the breaker Outdoor connecting wireBreaking or poor Fix the breaking or poor Indoor/outdoor connecting wire BlinkingDefective indoor Replace the indoor Power board Not lightingCheck if there is breaking Action Table Before repair Frequent calling from customersThis is not a malfunction Phone Calls From Customers How to RespondSometimes This is the sound which is heard when the flow Refrigerant in the air conditioner is switchedWith Airflow Direction… With Blower…There might be a case that Page HOW to Check the Parts END Wiring contact checkPower supply check Remove the connector CNF1 Fuse checkHigh temperature thermistor HOW to Check the ComponentsThermistor feature chart Low temperature thermistors Medium temperature thermistorOperation summary of the linear expansion valve Output pulse signal and the valve operationLinear expansion valve operation Linear expansion valve A24, 30, 36 How to attach the coil How to detach the coilBe sure to attach the stopper SW4 Emergency operation procedureEmergency Operation Releasing emergency operationOperation data during emergency operation Test Point Diagram LO, no LI, NICNAC1, CNAC2 CN5PUZ-A24NHA2 PUZ-A24NHA2-BS PUY-A24NHA2 PUY-A24NHA2-BS RS1 CN3 CN4 CN5 LD1-LD2DIP-PFC DIP-IPMActm CnafCN3 TABP2/SC-P2Lower side Upper sideL1, L2 OFF Function of SWITCHES, Connectors and JumpersFunction of switches Function Action by the switch operation Effective timingSW9 2Function of connector50% Special function75% Display function of inspection for outdoor unit 1Check the outdoor fan motor 1Check if stop valves are open Blinking Abnormality of outdoor fan Motor rotational speedDigital indicator LED1 working details Operation indicatorLighting Cancellation of postponement Example When 42500 times 425 100 times Secs 5secs~9999 When it is 100 hours or more, hundreds digit, tens Example When 2450 hours 245 10 hoursSW2 setting Display detail Explanation for display Unit Cooling only Outdoor unit setting informationSingle phase 2 3 phase UnitDegF Fan step on error occurring ~10 Step Example When 130 pulse U9 Error status during the Error Discharge superheat on error occurring ~327 0~182degC SHdSecs Sub cool on error occurring. SC ~234 0~130degC Example When 415 minutes Minute SecsLED Rise of discharge temperatureFixed Hz operation Easy Maintenance FunctionMaintenance Mode Operation Method Switching to maintenance modeTo check the data for each item, repeat steps 5 to Data measurementGuide for Operation Condition Average data Initial Ta=A+B/2 Sensor on all Function SettingUnit Function Setting by the Remote Controller Data of the sensor Ta=C On main remote ControllerSetting No Settings Mode No.11PLA-BA PCA-GA Press E FAN operation Selecting functions using the wired remote controllerFor modes 15 and higher Specified indoor unitOperating Procedure Operating instructions Flow of function selection procedureMode Selection Function Selection of Remote ControllerFunction selection flowchart FAN Mode VanePress Button for 3 seconds to switch to Maintenance monitorCheck button for 3 seconds to return to maintenance mode Turn on the Monitoring the operation dataRequest Code List Outdoor unit-Control state Code Description For indoor fan pulsation control 100101 Detail Contents in Request CodeActuator output state Request code Error content U9 Request code102 Fan control state Request codeContact demand capacity Request code Outdoor unit --Capacity setting display Request codeOutdoor unit Setting information Request code 103104 Data display See the table on the right Indoor unit Model setting information Request codeIndoor unit Capacity setting information Request code 105Photo Disassembly ProcedurePUZ-A18NHA2 PUZ-A18NHA2-BS Operating Procedure Photos 106Thermistor Outdoor pipe TH3 Removing the thermistor Outdoor 2-phase pipe TH6107 Removing the electrical parts box108 Operating Procedure PhotosRemoving the 4-way valve 109Removing linear expansion valve Removing the accumulator Separator Recover refrigerant110 Removing the compressor MCRemoving the fan motor MF1 Operating Procedure Photos & IllustrationRemoving the service panel and top panel 111Removing the thermistor Outdoor pipe TH3 112Thermistor Discharge TH4 Removing the bypass valve coil 113Removing the 4-way valve coil Removing the linear expansion valve coilRemoving the bypass valve 114Removing the reactor ACLA24 Removing the reactor DCL A30 115Remove 2 receiver leg fixing screws 4 Removing the fan motor MF1, MF2 116117 Remove the service panel. See figure Outdoor pipeRemove the top panel. See figure Controller Coil Valve coil 118Are not oxidized Linear expansionDCL Low pressure switch 63L119 Removing the reactor DCL and capacitor CERemove 2 back cover panel fixing screws 5 10

PUZ-A36NHA2-BS, PUY-A12NHA2, PUY-A42NHA2-BS, PUY-A30NHA2, PUZ-A36NHA2 specifications

Mitsubishi Electronics has long been a leader in the HVAC industry, and their range of air conditioning units, including the PUY-A24NHA2, PUZ-A24NHA2, PUY-A24NHA2-BS, PUZ-A42NHA2-BS, and PUY-A42NHA2, exemplifies their commitment to innovation and energy efficiency. These models are designed to provide optimal climate control for both residential and commercial applications, ensuring comfort throughout the year.

One of the defining features of these models is their advanced inverter technology, which allows for precise temperature control and reduced energy consumption. The inverter technology adjusts the compressor speed according to the cooling load, significantly lowering operating costs compared to traditional fixed-speed systems. This means that users can enjoy consistent comfort without worrying about surging energy bills.

The PUY and PUZ units come equipped with powerful indoor and outdoor components that enable efficient heat exchange. These systems provide excellent performance even in extreme weather conditions, with reliable operation at low ambient temperatures. This capability ensures that you can maintain a comfortable environment, no matter the season.

Additionally, the models are designed with quiet operation in mind. The outdoor units incorporate noise-reduction technology, ensuring that the systems operate at minimal sound levels. This is especially beneficial for residential areas or office environments, where maintaining a peaceful atmosphere is crucial.

Mitsubishi Electronics has also integrated smart technology into these units. With options for remote control via Wi-Fi, users can manage their air conditioning settings from anywhere, using their smartphones or tablets. This integration enhances user convenience and allows for more efficient scheduling and energy management.

These models are also known for their environmentally friendly refrigerants, such as R410A, which contribute to lower global warming potential and align with modern sustainability practices. By choosing Mitsubishi's PUY and PUZ series, consumers not only prioritize their comfort but also contribute to environmental conservation.

In summary, the Mitsubishi Electronics PUY-A24NHA2, PUZ-A24NHA2, PUY-A24NHA2-BS, PUZ-A42NHA2-BS, and PUY-A42NHA2 air conditioning units are equipped with cutting-edge technology, offering energy efficiency, quiet operation, and smart functionality. Whether for residential or commercial use, these units are designed to meet the demands of modern climate control while prioritizing energy savings and sustainability.