Trane Understanding Overload Protection Logic and CVHE Diagnostics

Page 69

Machine Protection

and Adaptive

Control

Current Overload Protection

Motor currents are continuously monitored for over current protection and locked rotor protection. This protects the Chiller itself from damage due to current overload during starting and running modes but is allowed to reach full load amps. This overload protection logic is independent of the current limit. The overload protection will ultimately shut the unit down anytime the highest of the three phase currents exceeds the time-trip curve. A manual reset diagnostic describing the failure will be displayed.

Overload protection for the motor starts based on the Maximum Time to Transition permitted for a particular motor .

Running Over Current Protection

In the run mode, a “time-to-trip” curve is looked at to determine if a diagnostic should be called. The UCP continuously monitors compressor line currents to provide running over current and locked rotor protection. Over current protection is based on the line with the highest current. It triggers a manually resettable diagnostic shutting down

the compressor when the current exceeds the specified time-trip curve. The compressor overload time trip curve is expressed as a percent of the Rated Load Amps of the compressor and is not adjustable:

Overload Must Hold = 102 Percent RLA.

Overload Must Trip in 20 (+0 -3) seconds = 112 Percent RLA (Note the above gives a nominal 20 second must trip point of 107 Percent RLA.)

Overload Must Trip in 1.5 seconds = 140 Percent RLA (Nominal)

The linear time-trip curve is as follows:

Figure 26. Overload trip time versus percent RLA

The Maximum Acceleration Time Setting and Current Transformer Setting are factory set however can be set with the service tool;

CVHE-SVU01E-EN

69

Image 69
Contents Operation Maintenance Read these carefully Contents Literature change General InformationAbout this manual Unit NameplateC0000000K01G14C10W1A03B1 CVHF091NAL00ACU2758W7E8TBControl Optional Packages Commonly Used AcronymsCvhf OverviewGeneral Information General Information Cvhf Compressor Cooling CycleCVHE, Cvhg pressure enthalpy curve Cvhf pressure enthalpy curve DynaView Human Interface TechView Chiller Service ToolCVHE, CVHF, and Cvhg sequence of operation running General Information Oil and Refrigeration Pump Surface TemperaturesOil refrigerant pump 20 100 percent RLA Base Loading Control AlgorithmGeneral Information Ice Machine Control Free Cooling Cycle Free Cooling Frcl Hot Gas Bypass Hot Water control Auxiliary Condensers Heat Recovery CycleUnit Control Panel UCP Control Panel Devices and Unit Mounted DevicesUnit Control Panel UCP User-defined language support Variable water flow through the evaporatorDynaView main processor Operator InterfaceOperator Interface How It Works Chiller Stop Prevention/Inhibit FeatureTop Level Mode Description Minsec System ResetReference Main Screen Diagnostic Screen Back button provides navigation back to the chiller screen Operator Interface Condenser Report Items Units Reports Evaporator Report items UnitsMotor Report Items Units Compressor Report Items UnitsRPM Purge Report Items UnitsAshrae Chiller Log Units Historic Diagnostics LogRLA PPMChilled Water Setpoint Mode Overrides Feature SettingsDescription Units Default Monitor Value ChillerDescription Units Default Display SettingsPurge Operator Interface Operator Interface Operator Interface Operator Interface Operator Interface Inter Processor Communications IPC3 Interprocessor CommunicationIPC3 Definitions Bus Management BindingControl System Components Control panel components layout and approximate dimensionsControl System Components Control Panel Devices Head Relief Request Output Machine Shutdown Manual Reset MMRCompressor Running Relay OpstExop Refrigerant Monitor Input 1A17Hgbp Hot Gas Bypass Option Frcl Free Cooling OptionTrmm TRM4 Tracer Comm 4 interface Cdrp Condenser Refrigerant Pressure OutputTemperature based Condenser Pressure OutputPressure based Refrigerant Differential Pressure Indication Output Gbas Generic Building Automation System GbasPercent RLA Output External Chilled Water Setpoint Ecws Module CharacteristicsExternal Current Limit Setpoint Wpsr WFC Water Pressure Sensing Option1A13, 1A18, 1A19, 1A20 Dual Binary input module 1A8, 1A9, 1A11, 1A12 Quad Relay Output Status1A14 Communication interface Module Comm +Recommended Length to Run external Output signals 1A15, 1A16, 1A17, 1A21 Dual Analog Input/output ModuleAnalog Input Unit mounted devices Control Sequence of Operation Electrical SequenceUCP and Wye-Delta Starter Control Circuits Delay time 200 msec. Opens 2K1 Control Sequence of Operation Test and start timing sequence AFD Machine Protection Adaptive Control Momentary Power Loss MPL ProtectionOverload trip time versus percent RLA Current Overload ProtectionPhase Loss Protection Current Limit ProtectionReverse Rotation Protection Differential to Start or Stop SoftLoadingMinimum and Maximum Capacity Limit Evaporator Limit Leaving Water Temperature CutoutMain Processor Software Revision 6.0 and higher Low Refrigerant Temperature CutoutCutout strategy Condenser Limit Evaporator Variable Flow CompensationRestart Inhibit Restart Inhibit Start to Start Time SettingRestart Inhibit Free Starts Clear Restart InhibitHigh Vacuum Lockout Oil Temperature Control Outdoor Air Temperature Controls Chilled Water Reset CWRMaximum Reset Return WaterDegrees of Reset Values for start reset typesConstant Return EquationOutdoor air temperature versus degrees of reset Reset RatioReset function for return CWR Reset Ratio = 50% Return CWR Unit Start-Up Procedures Unit StartupDaily Unit Start-Up Live Electrical Components Before changeover to heating modeToxic Hazards Seasonal Unit Start-UpUnit Shutdown Unit Shutdown ProceduresOil Pump Heater Operation Seasonal Unit ShutdownDaily Maintenance and Checks Periodic MaintenanceMoisture Contamination Record Keeping FormsNormal Chiller Operating Characteristics Weekly MaintenanceHazardous Voltage w/ Capacitors Every 3 MonthsAnnual Maintenance Off-Season MaintenanceOil Change Procedure Oil MaintenanceHeater Damage Compressor Oil Change onReplacing Oil Filter Oil Filter ReplacementOil Supply System Problems MaintenanceOther Maintenance Requirements LubricationFront View with Refrigerant Pump Do not Leave Grease Fittings InstalledRefrigerant Charge Contains RefrigerantLeak Testing Recovery and Recycle ConnectionsCleaning the Condenser Proper Water TreatmentCleaning the Evaporator Control Settings AdjustmentsUnit Corrosion Damage Unit Preparation Purge SystemHazardous Voltage w/ Capacitors 100 101 102 103 104 105 106 107 108 109 110 111 Trane

CVHE-SVU01E-ENX39640712050 specifications

The Trane CVHE-SVU01E-ENX39640712050 is a high-efficiency centrifugal chiller designed for commercial and industrial applications. This state-of-the-art unit is engineered to provide reliable cooling performance, energy efficiency, and optimized operational flexibility. It is particularly suitable for large-scale facilities that require significant cooling capacity and robust performance under varying load conditions.

One of the most notable features of the CVHE-SVU01E series is its advanced variable speed drive technology. This technology enables the chiller to adjust its speed according to the cooling demands of the facility, resulting in substantial energy savings. By operating at optimal speeds, this unit reduces power consumption and enhances overall efficiency. This is noteworthy in the context of rising energy costs and increasing sustainability demands across various industries.

Moreover, the CVHE-SVU01E is equipped with Trane’s proprietary Compliant Scroll compressor technology. This innovative compressor design minimizes mechanical losses and increases the efficiency of the chiller system. Additionally, the compressor is specifically designed to handle varying refrigerant flow rates, allowing the chiller to maintain performance even when faced with fluctuating conditions.

Another significant characteristic of this chiller model is its use of environmentally friendly refrigerants, aligning with global regulations aimed at reducing greenhouse gas emissions. This commitment to sustainability ensures that the CVHE-SVU01E not only provides excellent cooling performance but also adheres to contemporary environmental standards.

The unit utilizes an advanced control system that simplifies operation and enhances troubleshooting capabilities. The intuitive interface allows facility managers to monitor performance metrics, optimize operation schedules, and conduct remote diagnostics, significantly reducing costly downtime and maintenance efforts.

Furthermore, the compact and modular design of the CVHE-SVU01E makes it easy to install in various settings. Its durability is ensured through the use of high-quality materials and components, designed to withstand the rigors of demanding environments. With reduced maintenance requirements, facility operators can focus on core business functions without frequent interruptions.

In summary, the Trane CVHE-SVU01E-ENX39640712050 combines cutting-edge technologies and features to deliver exceptional performance, efficiency, and reliability in commercial cooling applications. Its advanced design contributes to reduced energy costs, minimal environmental impact, and greater operational flexibility, making it an excellent choice for organizations seeking sustainable and efficient cooling solutions.