Trane Comprehensive Guide to EarthWise Purge for Chiller Maintenance

Page 98

Maintenance

Purge System

Because some sections of the chiller’s refrigeration system operate at less-than-atmospheric pressure, the possibility exists that air and moisture may leak into the system. If allowed to accumulate, these noncondensables become trapped in the condenser; this increases condensing pressure and compressor power requirements, and reduces the chiller’s efficiency and cooling capacity.

The Trane EarthWise Purge is the only purge system available for the CVHE, CVHF and CVHG chiller. The purge is designed to remove noncondensable gases and water from the refrigeration system. EarthWise Purge unit operation, maintenance and trouble shooting is covered by a separate operation and maintenance manual, which may be obtained from the nearest Trane office.

Overview

This section describes extended storage requirements for UCP installed CVHE, CVHF and CVHG chillers to be removed from service for an undetermined length of time.

Unit Preparation

The following steps are necessary in order to properly prepare a unit for storage.

1.Remove all liquid refrigerant if the unit is charged.

WARNING

Contains Refrigerant!

System contains oil and refrigerant and may be under positive pressure. Recover refrigerant to relieve pressure before opening the system. See unit nameplate for refrigerant type. Do not use non-approved refrigerants, refrigerant substitutes, or refrigerant additives.

Failure to follow proper procedures or the use of non-approved refrigerants, refrigerant substitutes, or refrigerant additives could result in death or serious injury or equipment damage.

2.After the liquid refrigerant is removed, using a recovery or recycle unit or vacuum pump, pull a vacuum to remove remaining refrigerant vapor from the unit.

3.After all traces of refrigerant are out of the unit, a positive nitrogen charge should be put into the unit (6 to 8 psig). This positive pressure must be checked monthly to insure no noncondensables get into the unit. Use a pressure gage on the evaporator shell to verify that the 6 to 8 psig dry nitrogen holding charge is still in the chiller. If this charge has escaped, contact a qualified service organization and the Trane sales engineer that handled the order.

4.The refrigerant charge should be stored in proper refrigerant containers. Due to possible leakage, do not store in used drums.

5.Maintain control power to the control panel. This will maintain oil temperature in the oil sump and the capability of the control panel to present report information. The Chiller Reports should be viewed once a week for normal readings. Any abnormal observation must be reported to the Trane Sales Engineer that handled the order.

98

CVHE-SVU01E-EN

Image 98
Contents Operation Maintenance Read these carefully Contents About this manual General InformationLiterature change Unit NameplateCVHF091NAL00ACU2758W7E8TB C0000000K01G14C10W1A03B1Commonly Used Acronyms Control Optional PackagesOverview CvhfGeneral Information General Information Cooling Cycle Cvhf CompressorCVHE, Cvhg pressure enthalpy curve Cvhf pressure enthalpy curve TechView Chiller Service Tool DynaView Human InterfaceCVHE, CVHF, and Cvhg sequence of operation running General Information Surface Temperatures Oil and Refrigeration PumpOil refrigerant pump Base Loading Control Algorithm 20 100 percent RLAGeneral Information Ice Machine Control Free Cooling Cycle Free Cooling Frcl Hot Gas Bypass Hot Water control Heat Recovery Cycle Auxiliary CondensersUnit Control Panel UCP Unit Control Panel UCPControl Panel Devices and Unit Mounted Devices Variable water flow through the evaporator User-defined language supportOperator Interface DynaView main processorOperator Interface Chiller Stop Prevention/Inhibit Feature How It WorksTop Level Mode Description System Reset MinsecReference Main Screen Diagnostic Screen Back button provides navigation back to the chiller screen Operator Interface Reports Evaporator Report items Units Condenser Report Items UnitsRPM Compressor Report Items UnitsMotor Report Items Units Purge Report Items UnitsRLA Historic Diagnostics LogAshrae Chiller Log Units PPMChilled Water Setpoint Description Units Default Monitor Value Feature SettingsMode Overrides ChillerPurge Description Units DefaultDisplay Settings Operator Interface Operator Interface Operator Interface Operator Interface Operator Interface IPC3 Definitions Bus Management Interprocessor CommunicationInter Processor Communications IPC3 BindingControl panel components layout and approximate dimensions Control System ComponentsControl System Components Control Panel Devices Compressor Running Relay Machine Shutdown Manual Reset MMRHead Relief Request Output OpstRefrigerant Monitor Input 1A17 ExopTrmm TRM4 Tracer Comm 4 interface Frcl Free Cooling OptionHgbp Hot Gas Bypass Option Cdrp Condenser Refrigerant Pressure OutputPressure based Temperature basedCondenser Pressure Output Refrigerant Differential Pressure Indication Output Percent RLA Output Gbas Generic Building Automation SystemGbas External Current Limit Setpoint Module CharacteristicsExternal Chilled Water Setpoint Ecws Wpsr WFC Water Pressure Sensing Option1A14 Communication interface Module 1A8, 1A9, 1A11, 1A12 Quad Relay Output Status1A13, 1A18, 1A19, 1A20 Dual Binary input module Comm +Analog Input Recommended Length to Run external Output signals1A15, 1A16, 1A17, 1A21 Dual Analog Input/output Module Unit mounted devices UCP and Wye-Delta Starter Control Circuits Control Sequence of OperationElectrical Sequence Delay time 200 msec. Opens 2K1 Control Sequence of Operation Test and start timing sequence AFD Momentary Power Loss MPL Protection Machine Protection Adaptive ControlCurrent Overload Protection Overload trip time versus percent RLAReverse Rotation Protection Phase Loss ProtectionCurrent Limit Protection Minimum and Maximum Capacity Limit Differential to Start or StopSoftLoading Leaving Water Temperature Cutout Evaporator LimitLow Refrigerant Temperature Cutout Main Processor Software Revision 6.0 and higherCutout strategy Evaporator Variable Flow Compensation Condenser LimitRestart Inhibit Free Starts Restart Inhibit Start to Start Time SettingRestart Inhibit Clear Restart InhibitHigh Vacuum Lockout Oil Temperature Control Maximum Reset Controls Chilled Water Reset CWROutdoor Air Temperature Return WaterConstant Return Values for start reset typesDegrees of Reset EquationReset Ratio Outdoor air temperature versus degrees of resetReset function for return CWR Reset Ratio = 50% Return CWR Daily Unit Start-Up Unit Start-Up ProceduresUnit Startup Toxic Hazards Before changeover to heating modeLive Electrical Components Seasonal Unit Start-UpOil Pump Heater Operation Unit Shutdown ProceduresUnit Shutdown Seasonal Unit ShutdownMoisture Contamination Periodic MaintenanceDaily Maintenance and Checks Record Keeping FormsHazardous Voltage w/ Capacitors Weekly MaintenanceNormal Chiller Operating Characteristics Every 3 MonthsOff-Season Maintenance Annual MaintenanceHeater Damage Oil MaintenanceOil Change Procedure Compressor Oil Change onOil Filter Replacement Replacing Oil FilterOther Maintenance Requirements MaintenanceOil Supply System Problems LubricationDo not Leave Grease Fittings Installed Front View with Refrigerant PumpContains Refrigerant Refrigerant ChargeCleaning the Condenser Recovery and Recycle ConnectionsLeak Testing Proper Water TreatmentUnit Corrosion Damage Cleaning the EvaporatorControl Settings Adjustments Purge System Unit PreparationHazardous Voltage w/ Capacitors 100 101 102 103 104 105 106 107 108 109 110 111 Trane

CVHE-SVU01E-ENX39640712050 specifications

The Trane CVHE-SVU01E-ENX39640712050 is a high-efficiency centrifugal chiller designed for commercial and industrial applications. This state-of-the-art unit is engineered to provide reliable cooling performance, energy efficiency, and optimized operational flexibility. It is particularly suitable for large-scale facilities that require significant cooling capacity and robust performance under varying load conditions.

One of the most notable features of the CVHE-SVU01E series is its advanced variable speed drive technology. This technology enables the chiller to adjust its speed according to the cooling demands of the facility, resulting in substantial energy savings. By operating at optimal speeds, this unit reduces power consumption and enhances overall efficiency. This is noteworthy in the context of rising energy costs and increasing sustainability demands across various industries.

Moreover, the CVHE-SVU01E is equipped with Trane’s proprietary Compliant Scroll compressor technology. This innovative compressor design minimizes mechanical losses and increases the efficiency of the chiller system. Additionally, the compressor is specifically designed to handle varying refrigerant flow rates, allowing the chiller to maintain performance even when faced with fluctuating conditions.

Another significant characteristic of this chiller model is its use of environmentally friendly refrigerants, aligning with global regulations aimed at reducing greenhouse gas emissions. This commitment to sustainability ensures that the CVHE-SVU01E not only provides excellent cooling performance but also adheres to contemporary environmental standards.

The unit utilizes an advanced control system that simplifies operation and enhances troubleshooting capabilities. The intuitive interface allows facility managers to monitor performance metrics, optimize operation schedules, and conduct remote diagnostics, significantly reducing costly downtime and maintenance efforts.

Furthermore, the compact and modular design of the CVHE-SVU01E makes it easy to install in various settings. Its durability is ensured through the use of high-quality materials and components, designed to withstand the rigors of demanding environments. With reduced maintenance requirements, facility operators can focus on core business functions without frequent interruptions.

In summary, the Trane CVHE-SVU01E-ENX39640712050 combines cutting-edge technologies and features to deliver exceptional performance, efficiency, and reliability in commercial cooling applications. Its advanced design contributes to reduced energy costs, minimal environmental impact, and greater operational flexibility, making it an excellent choice for organizations seeking sustainable and efficient cooling solutions.